
MANUFACTURING & SERVICE OPERATIONS MANAGEMENT
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 1523-4614 |eissn 1526-5498 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Assortment Optimization and Pricing under a
Nonparametric Tree Choice Model

Alice Paul
Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850, ajp336@cornell.edu

Jacob Feldman*
Olin Business School, Washington University, St. Louis, MS 63108, jbfeldman@wustl.edu

James Mario Davis
Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801,

jamesmariodavis@gmail.com

We consider assortment and pricing problems when customers purchase products according to a nonpara-

metric choice model. Each customer arrives with a preference list and will purchase the highest-ranking

offered product in her preference list. We assume the set of customer classes is derived from paths in a tree,

in which the order of nodes visited along each path gives the corresponding preference list. First, we study

assortment problems, in which the goal is to find which products to offer to maximize expected revenue. We

give a dynamic programming solution, which can be extended to versions of the assortment problem in which

there are fixed costs for offering a product, shelf constraints, or substitution costs. Second, we study the joint

assortment and pricing problem, in which the goal is to simultaneously select the set of offered products as

well as their prices. We solve the pricing problem optimally when customers have some universal ranking

of the products, and hence the tree takes the form of a single path. We also solve the problem optimally

on the general tree when the prices are restricted to be quality consistent; higher quality products must be

priced above lower quality products. Lastly, we present computational experiments on both synthetic data

and real hotel purchase data. Our estimation procedure shows both how to build the tree of products and

how to estimate the underlying arrival probabilities of each customer type from historical sales data. These

experiments show that the tree choice model captures customer purchasing behavior more accurately than

the multinomial logit choice model in the majority of test cases.

Key words : customer choice models, dynamic programming, assortment optimization, price optimization

1. Introduction

The ability to accurately model customer demand is critical for any retailer since this model

will guide everything from inventory decisions to pricing to promotion strategies. Customer

choice models provide a way to model this demand; a customer choice model maps any

* Corresponding author.

1

Feldman, Paul and Davis: Nonparametric Revenue Management
2 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

assortment of available products to the probabilities the products in the assortment are

purchased. Through these models, we can also capture how a product’s features affect

its attractiveness and hence its probability of being purchased. A common feature that

is considered is price, since it influences both demand and profit margins. Further, since

the prices of each product can be varied after the products have been produced, it is a

straightforward lever to optimize profits. A variety of customer choice models exist, each

capturing the effects of substitution and price sensitivities differently. An ideal choice model

is one which is simple to describe, easy to estimate, and whose corresponding revenue

management problems admit tractable solutions.

In this paper, we consider assortment and pricing problems when customers choose

among the offered products according to a special case of the full nonparametric ranking-

based choice model dating back to Mahajan and van Ryzin (2001a) and Mahajan and van

Ryzin (2001b). In the full nonparametric ranking-based choice model, each customer class

is distinguished by an arrival probability and a unique ranking on a subset of products. For

the remainder of this paper, we use the term preference list to refer to the unique ranking

of the products associated with a customer class. Further, we use the term customer class

and customer type synonymously. In this full model, there are no restrictions on the set

of potential preference lists and hence the number of customer types grows exponentially

in the number of products. When presented with an assortment of products, a customer

will purchase the highest ranking offered product in her preference list, and if there is no

offered product in her preference list, then she leaves without making a purchase.

In the pricing setting, customer classes will also have budgets, and will purchase the

highest ranking product in their preference list that is priced within their respective budget.

We note that in modeling price sensitivity in this manner, we assume that prices only play

a role in determining the consideration set of each customer. We use the term consideration

set to refer to the subset of products that a customer of a particular type would ever be

interested in purchasing. From a random utility maximization perspective, this amounts

to the assumption that prices only influence the utility that a customer associates with

each product in a binary manner: if a product is priced above the budget of a given

customer, then this customer will associate a utility of zero with this product, otherwise,

the associated utility can be viewed as a function of the other features of the product and

is not influenced by price.

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 3

This modeling assumption is supported by the work of Gilbride and Allenby (2004), who

study a two-stage choice model in which consumers first form consideration sets based on

screening rules for the attributes of products, and then proceed to purchase the product

with the highest utility within their consideration set. The authors find that choice models

built on the groundwork of conjunctive screening rules, under which a product makes it

into a consumer’s consideration set only if it is found acceptable with regards to all relevant

attributes, fit the data the best. The idea of a budget threshold is singled-out as one such

attribute that could form the basis of a conjunctive screening rule. Further, using survey

data on camera purchases, they find that price and body style play an important role

in determining the consideration set, but not in the final choice from among the offered

products. It is not hard to imagine that customers would exhibit similar behavior when

purchasing other leisure pieces of technology such as televisions, which have distinguishing

features similar to those of a camera. In general, this pricing assumption seems to capture

settings in which customers purchasing a mid-range item have a threshold discount at

which they will substitute to a higher-end product.

The full nonparametric choice model has the ability to generalize any random utility

choice model; however this modeling flexibility comes at a cost. Due to the potentially large

number of customer types, it can be difficult to estimate the underlying arrival probabilities

of each customer type and to provide tractable algorithms for the accompanying revenue

management problems. For example, under the general nonparametric choice model, there

is no efficient algorithm to determine the assortment that maximizes a retailer’s expected

revenue, a fundamental problem. The model we present and study places structure on

the set of allowable preferences lists in a manner that always guarantees a manageable

number of customer types. To be more precise, given an undirected tree in which each node

corresponds to a unique product, the set of all possible customer types is characterized by

the set of all paths in the tree. We restrict these paths to be linear in the sense that they

must either move progressively towards or away from the root node. We fully formalize

the notion of a linear path as well as the model as a whole in Section 2.

The general tree model that we present should be viewed as a generalization of the

intree and outtree models introduced in Honhon et al. (2012). These models are similar

to ours in that customer classes correspond to paths in an underlying tree, but they also

have the critical restriction that each path must include the root node. This restriction

Feldman, Paul and Davis: Nonparametric Revenue Management
4 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

ultimately leads to significant shortcomings in the practicality of these two models. By

allowing preference lists to be associated with arbitrary linear paths, we alleviate many of

the shortcomings of the intree and outtree models, and as a result, we are able to capture

a broader range of retail settings.

The intree model is appropriate when customers substitute from specific, specialized

products to more general products. General products that are designed to appeal to a

wide range of customers would be located towards the root of the tree, with the root

being the most general. Products targeted to specific customer segments would be located

towards the leaves of the tree, with the leaves being the most targeted products. The

critical limitation of the intree model is that all preference lists include the root product,

implying in our example, that all customers are willing to substitute to the most general

product type. First, this means that if the product corresponding to the root node is

made available for purchase, then every arriving customer will make a purchase. In settings

in which there are high numbers of no-purchase events, such as e-commerce, it is likely

that the intree model will fail to explain large portions of the sales data. Further, in

assuming that all customer types substitute down to the root, the intree model is unable

to capture any differentiation in pickiness within the customer population. In Honhon

et al. (2012), the motivating example for the intree shows how it can be used to model

customers purchasing various shampoos. The all-purpose shampoo is placed at the root,

while shampoos targeted at very specific hair types are located at the leaves. The intree

model assumes that all customers are willing to substitute to the all-purpose shampoo if

their preferred, more targeted product is unavailable. In contrast, since the general tree

model allows for preference lists that can end anywhere in the tree, it allows us to capture

the purchasing behavior of customers who will leave the store without making a purchase

if they cannot find their desired targeted product.

In the outtree model, all customer classes are associated with paths that begin at the

root node and terminate at an interior or leaf node. The outtree model is appropriate

when customers substitute from products with many features to products with less robust

feature sets. This is the case, for example, in a product line that is targeted to a wide range

of consumer budgets, with more expensive products having richer feature sets. Expensive

products with many features would be located towards the root of the tree, with the most

feature rich product at the root node. Less expensive products with less rich feature sets

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 5

are located toward the leaves of the tree, with the least feature rich located at the leaves.

The outtree model has similar limitations to the intree model: all preference lists include

the root product as the highest ranked product, implying that all customers will purchase

this product if it is offered. For customers who are budget conscious, this is clearly an

unrealistic assumption. Again, since paths associated with preference lists can start at any

node in the general tree model, our model captures the various budgets associated with

different segments of customers.

Building on these motivating examples for the intree and outtree, we note that it is best

to use the general tree model in settings in which customers have monotonic preferences for

features in a product line, and the retailer would like to understand how customers trade

off between various combinations of these features when making a purchase. One example

of a setting in which the general tree model is likely suitable is in describing customers

purchasing iPhones; newer editions are preferred to older ones and more memory is more

desirable than less memory. Another setting in which the general tree model is applicable

is hotel bookings. Here, customers consider the trade-off between features such as price,

bed size, square footage, and the presence or absence of beautiful views among others. In

these cases, the structure of the underlying tree provides insights into how customers value

these features. However, in most scenarios, including the hotel example that we study, it is

unclear exactly how the products should be ordered in the tree. Hence for the tree model to

be practically useful, it is essential that the tree structure can be teased out from sales data

and that we can solve the common revenue management problems that arise in a tractable

fashion. In the remainder of this paper, we show how to accomplish both of these tasks.

The combination of efficient estimation procedures for the model and tractable algorithms

for the optimization problems allows the tree model to form a practical basis of revenue

management systems.

Contributions.

First, we consider assortment optimization problems under the general tree model. In

the assortment optimization problem, the retailer is presented with a collection of products

from which she must choose an assortment of products to offer to customers so as to

maximize expected revenue. In this case, we show that the assortment problem can be

solved with a dynamic program. This dynamic program has a small state space, which leads

to efficient optimization. The key insight that we make in the dynamic program boils down

Feldman, Paul and Davis: Nonparametric Revenue Management
6 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

to the idea that the purchase probability of any item within an arbitrary assortment can

be computed recursively with only knowledge of each product’s closest offered predecessor

in the tree. The dynamic program for the pure assortment problem can be extended to

settings in which the retailer has additional cost considerations. We consider scenarios in

which there are fixed costs to include products in the offered assortment and penalties

when a customer is forced to substitute to a less preferred product. Substitution penalties

model a loss of customer good will, a common consideration for retailers. Finally, we extend

the dynamic program to the cardinality constrained assortment optimization problem. In

this problem, the available products are grouped into categories and the retailer can offer

a limited number of products from each category. In the simplest case, all products are in

a single category and the retailer is constrained to have an assortment of limited size.

The second problem that we consider has come to be known as the joint assortment

and pricing problem. In this problem, the retailer must choose an assortment of products

to offer to customers as well as the prices for these offered products with the goal of

maximizing the expected revenue from each arriving customer. In order to capture each

consumer’s sensitivity to price, we assume that each customer class is distinguished by a

budget in addition to an arrival probability and preference list. Arriving customers will

purchase the highest ranking product in their respective preference list that is priced below

their budget. It is not difficult to see that this problem generalizes the pure assortment

problem and hence it is no surprise that the additional pricing element renders this problem

more difficult. As a result, we place additional restrictions on the set of potential customer

classes. We first assume that all preference lists are derived from a line graph; that is

a tree consisting of a single path from the root to a leaf node. We call this model the

interval model since all preference lists will be of the form [i, i+ 1, . . . , j]. When prices are

exogenous, this model reduces to the one-way substitution model of Honhon et al. (2012).

It is important to note that endogenizing prices in this manner renders the techniques

presented for the one-way substitution model in Honhon et al. (2012) irrelevant to our

setting. As such, we provide the first polynomial-time algorithm for this problem when

there are no restrictions on the set of prices that the retailer can charge. In Section 2 of the

Online Appendix, we consider the joint assortment and pricing problem on general trees

when prices are restricted to be quality consistent. We defer this analysis to the appendix

since the techniques we use mirror those used for the pure assortment problem.

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 7

In addition to considering the above assortment and pricing problems, we also provide

evidence for the practical importance of the general tree model. First, we show how to

generate the tree structure from historical sales data rather than having the tree specified in

advance, as in Honhon et al. (2012). This is an important differentiation since the structure

may not always be clear or well-defined. We run two sets of experiments; the first uses

synthetic sales data generated from a known ground choice model and the second uses the

real hotel booking data provided in Bodea et al. (2009). We show that the fitted general

tree models derived from the estimated tree structures capture customer behavior better

than the well-known multinomial logit (MNL) choice model for both sets of experiments.

For the experiments based on synthetic sales data, we find the optimal assortments under

the fitted general tree model and the fitted MNL model, respectively. Then, we check

the performance of these recommended assortments under the ground truth choice model,

which we used to generate the data. We find that the assortments recommended by the

general tree model often outperform those recommended by the MNL model by over 10%.

These results give evidence against the use of revenue ordered assortments, which are well

known to be optimal under the MNL choice model and often employed because of their

intuitive nature. For the hotel data set, we do not know the true ground choice model so

we test the fitted models based on the metric of likelihood. We find that the general tree

model outperforms the MNL in the majority of the test cases.

Related Literature. There are a several papers that have considered the assortment opti-

mization problem under the nonparametric choice model. The work that is most closely

related to ours is Honhon et al. (2012), which considers the assortment problem restricted

to intrees and outtrees. Both of these models have restrictions on which preference lists can

be associated with customer classes. We extend the results of this paper by lifting many of

these restrictions and working in a more general setting. Two other papers that are closely

related to our work are Aouad et al. (2015b) and Aouad et al. (2015a). The former proves

various hardness results related to the assortment problem under the nonparametric choice

model. The latter considers the assortment optimization problem under the nonparametric

choice model when customer preference lists are associated with structured set systems

defined over a single overarching ordering of the products (e.g. a laminar family). The

general algorithm provided in this paper can be used to solve the outtree case described

in Honhon et al. (2012), but it does not generalize to the more complex intree case.

Feldman, Paul and Davis: Nonparametric Revenue Management
8 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Our work on the joint assortment and pricing problem under the interval model most

closely resembles the work of Rusmevichietong and Jagabathula (2015), who consider the

same joint assortment and pricing problem under the most general form of the nonparamet-

ric choice model. Under this more general form, the joint assortment and pricing problem

is NP-Hard. Motivated by this result, the authors present a polynomial-time approxima-

tion scheme (PTAS) whose runtime scales exponentially in a parameter they call d, which

essentially represents how much any feasible pricing scheme is allowed to break a quality

consistent structure. Their approach relies on a fairly intricate dynamic program which

places a carefully chosen grid on the set of prices that the retailer can charge. To contrast,

while we consider a less general choice model, the algorithms that we provide are optimal

and their runtime is polynomial in all input parameters. There are a few earlier works that

consider the joint assortment and pricing problem under the nonparametric choice model.

Aggarwal et al. (2004) are the first to develop algorithms with provable performance guar-

antees for variations of the joint assortment and pricing problem. Most notably, when the

prices are constrained by a price ladder, the authors are able to develop a PTAS. Rus-

mevichientong et al. (2006) also restrict the set of feasible prices to a price ladder. With

this simplification of the pricing structure, the authors develop various heuristics, which

they show work well in practice.

There is vast literature on assortment optimization problems under various other choice

models. Talluri and van Ryzin (2004) solve the assortment optimization problem under

the multinomial logit model. Extending this result, Rusmevichientong et al. (2010), Wang

(2012), Davis et al. (2013), and Wang (2013) study various versions of the constrained

assortment problems when customers choose according to the MNL model. Mendez-Diaz

et al. (2010), Desir and Goyal (2013), and Rusmevichientong et al. (2014) focus on assort-

ment problems when customer choices are governed by a mixture of multinomial logit

models. Li et al. (2015), Davis et al. (2014), and Li and Rusmevichientong (2014) develop

efficient methods for the unconstrained assortment problem when customers choose under

the nested logit model. Gallego and Topaloglu (2014) and Feldman and Topaloglu (2015)

consider the space and cardinality constrained versions of the assortment problem when

customers choose according to the nested logit model.

More recently, Blanchet et al. (2016) introduce the Markov chain (MC) choice model

and show that it subsumes the MNL model in addition to approximating other well-known

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 9

choice models quite accurately. Further, Hosseinalifam et al. (2015) show that the MC

choice model subsumes any nonparametric choice model in which the preference lists are

nested, meaning they take the form [1,2, . . . j]. Since this nested nonparametric choice

model is a special case of the outtree model, it is natural to wonder whether the general

tree model can be captured with a MC choice model. It turns out that any deviation from

this nested structure on the preference lists breaks the validity of the reduction presented

in Hosseinalifam et al. (2015). In Section 4 of the Online Appendix, we show that we can

construct a tree model on just three products that the MC choice model cannot capture.

In this same appendix, we also comment on the difficulties in estimating the parameters

of the MC choice model in relation to the general tree model.

The remainder of this paper is organized as follows. In Section 2, we describe the general

tree model and introduce the assortment optimization problems that we study. In Section

2.1, we give our dynamic programming approach to solve the unconstrained assortment

problem and show how this approach can be extended to consider cost or capacity con-

siderations (Section 2.2). Next, we introduce and solve the joint assortment and pricing

problem under the interval model in Section 3. We present computational experiments in

Section 4 to validate the efficiency of our dynamic programming approach. In Section 5,

we show that the general tree model can be effectively estimated. In Section 6, we conclude

and provide directions for future work.

2. Assortment Optimization

First, we describe the general nonparametric choice model and the difficulty of its corre-

sponding assortment problems in an effort to motivate our research for the general tree

choice model. A retailer has access to a collection of n substitutable products indexed by

N = {1, . . . , n}. There is a collection of customer classes G, where each customer class g ∈ G

is defined by an arrival probability λg and a product preference list σg defined over a subset

of N . The list σg represents a customer’s product preferences. We let σg(i) be the rank of

product i in customer class g’s preference list and let σ−1g (k) be customer class g’s kth most

preferred product. Note that σg may not include all products in N . If the retailer offers

assortment S ⊆N and the list σg contains an element of S, then a customer of type g will

purchase product πg(S) := arg mini∈S∩σg σg(i). If σg does not contain an element of S, this

customer does not make a purchase. In this case, we abuse notation and let πg(S) = 0 and

Feldman, Paul and Davis: Nonparametric Revenue Management
10 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

say that the customer has “purchased” the so-called no-purchase option, which we give

index 0.

Given the collection of customer classes G and offer set S, the probability that item i is

purchased is

Pri(S) =
∑

g∈G:πg(S)=i

λg.

For every j ∈ N , we let rj > 0 denote the revenue of product j. When assortment S is

offered, the expected revenue is then

R(S) =
∑
i∈S

ri ·Pri(S).

Our objective is to find a set S∗ ⊆N that maximizes expected revenue. The assortment

optimization problem is expressed as follows:

R∗ = max
S

R(S). (1)

Aouad et al. (2015b) show that problem (1) is NP-Hard to approximate within a factor

of O(n1−ε) for any ε > 0. Further, the hardness result of Aouad et al. (2015b) holds even

when the preference lists for each customer type are constructed from a single overarching

ordering, i.e. there exists an ordering ≺ on the products where σg(i)< σg(j) implies i≺ j

for all g ∈ G. As a result, a natural next step is to simplify the space of potential customer

types in order to render the assortment problem tractable while not making too large a

sacrifice in terms of modeling flexibility.

We will be interested in customer classes based on a rooted undirected tree structure

T = (N,E). The nodes in the tree represent all products that the retailer can potentially

offer. Any customer class g ∈ G has a preference list σg associated with a path in T ; the

ordering of the products in σg corresponds to the order products are visited in a path

through T . We restrict our attention to linear paths, which we define as paths that visit at

most one child of every node. See Figure 1. In an effort to solve the assortment problems

for the most general form of the tree model, we allow the paths that we associate with

preference lists to move towards or away from the root node. However, we emphasize that

the main benefit of the general tree model is that paths associated with customer classes

can start anywhere in the tree. When no confusion arises, we identify σg with a path in

the tree and refer to the preference list as moving towards or away from the root. In what

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 11

Figure 1 Example Tree.

7

4

2

1

3

6

5

P4T4

C4

Note. An example of a set of customer classes represented as a rooted binary tree. Possible customer preference lists

are all linear paths including (7,4,2,1), (3,4), and (5). The path (1,2,4,3) is not linear and would not correspond to

a possible customer class.

follows, we will assume the tree T is a binary tree. This assumption is without loss of

generality; we can meet this requirement by adding at most n nodes that represent null

products that provide no cost or benefit to the retailer.

2.1. Unconstrained Problem

In this section, we provide a dynamic program for the assortment problem given in (1).

The structure of the underlying tree T will guide the steps of computation in our dynamic

program. Before stating the dynamic program, we first introduce additional notation and

develop specific insights into solving (1) in a tree T . Table 1 summarizes the various pieces

of notation that we use.

Table 1 Tree Notation

T , Rooted tree structure (N,E)

Ti , Subtree rooted at node i∈N containing all successors

of i

Ci , Children of node i∈ T

Pi , Parent of node i∈ T

φi(S) , For S ⊆N and i∈ S, i’s closest predecessor in S

δi(S) , For S ⊆N and i ∈ S, the set of closest successors to i

in S.

Φ(i) , All of i’s predecessors in T in addition to the no-

purchase option

Feldman, Paul and Davis: Nonparametric Revenue Management
12 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Given a vertex i, we let Ci be the children of i in T . Further, we say that i is the parent

of all j ∈Ci and define Pj = i. Note that for leaves of T , Ci = ∅. We will also be interested

in complete subtrees of T . We let Ti be the subtree rooted at i containing all successors

of i. When there is no confusion we will also use Ti to refer to the products represented

by the nodes of the complete subtree. Without loss of generality, we can index the nodes

such that the root node has index n and if Ti ⊂ Tj then j > i. See Figure 1.

The tree T will be used to define blocking relationships among products. For a customer

class g, we say i blocks product j when S is offered if πg(S) = i and πg(S \ {i}) = j. More

generally, we say i blocks j when S is offered whenever there exists at least one class g for

which this blocking relationship holds. Intuitively, i blocks j when the removal of i from

the offer set induces a customer class to purchase product j. Since T defines the ordered

lists for customer classes, these blocking relationships are tied to T . We define, for any pair

of nodes, the degree to which these nodes block each other. Specifically, we let

Bi,j =
∑

g∈G:πg({i,j})=i,πg({j})=j

λg.

Note that Bi,j is not identical to Bj,i since these two terms involve customer classes moving

in opposing directions, which may have different associated probabilities. In addition to

describing blocking in terms of probability, we will also describe blocking in terms of

revenue. We let rjBi,j be the revenue i blocks from j when {i, j} is offered.

Given a subset S and i ∈ S, we define φi(S) to be i’s closest predecessor in S and

δi(S) = {j ∈ S|φj(S) = i} to be the set of closest successors to i in S. If no predecessor of i

is offered in S, we let φi(S) = 0. If no successors are offered, we let δi(S) = ∅. Further, we

use Φ(i) to represent all of i’s predecessors in T in addition to product 0, the no-purchase

option. See Figure 2.

If we offer subset S and i ∈ S, any customer class g traveling away from the root that

has i in its preference list does not end up purchasing i if and only if she purchases a

predecessor j of i. Since all customer classes are linear, this customer class must also

contain φi(S) in σg before i. Therefore, we know σg contains both φi(S) and i but ranks

φi(S) above i. Similarly, a customer class traveling up the tree towards the root that has i

in its preference list does not purchase i if and only if it purchases a successor of i. Since

all customer classes are linear, σg must contain both a node j ∈ δi(S) and i but ranks j

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 13

Figure 2 Understanding Predecessors and Successors.

9

8 7

6 5 4 3

2 1

Note. If we offer products S = {9,4,6,2,1}, then the closest offered predecessor of product 2 is φ2(S) = 6 and the

closest offered successors of product 9 are δ9(S) = {6,4} .

above i. These considerations allow us to rewrite the probability i ∈ S is purchased using

our blocking notation:

Pri(S) = Pri({i})−Bφi(S),i−
∑

j∈δi(S)

Bj,i. (2)

This alternative expression is critical for the development of our dynamic program.

Our dynamic program is based on maximizing adjusted revenues in complete subtrees

of T . Intuitively, given Ti and a node p∈Φ(i), the adjusted revenue of an offer set Si ⊆ Ti
is the revenue received from products in Si when we offer Si ∪ {p} minus the revenue Si

blocks from the product p. More precisely, given a subset Si ⊆ Ti and a closest offered

predecessor p of i, we define the adjusted revenue of Si to be

A(Si, p) =
∑
j∈Si

rjPrj(Si ∪{p})− rp
∑

k∈δp(Si∪{p})

Bk,p.

Note that this expression also holds when p = 0. The first term is the revenue received

from products in Si when the offer set is Si∪ p. The second term accounts for the revenue

Si blocks from p. The proposition below shows that the revenue of any assortment can be

computed by summing adjusted revenues.

Proposition 1. Consider any subset S ⊆ N and node i with children l and r. Let

Si = Ti ∩S, Sl = Tl ∩S, and Sr = Tr ∩S. Lastly, let p= φi(S). Then,

A(Si, p) =

A({i}, p) +A(Sl, i) +A(Sr, i) i∈ S,

A(Sl, p) +A(Sr, p) otherwise.

In particular, this shows that A(S,0) =
∑

i∈SA({i}, φi(S)) =R(S).

Feldman, Paul and Davis: Nonparametric Revenue Management
14 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Proof. We delay the proof to Appendix A. �

By Proposition 1, we can rewrite the unconstrained assortment problem given in (1) as

R∗ = maxS⊆N A(S,0). We now present our dynamic programming formulation. Each stage

is a product i under consideration for inclusion in S and the one dimensional state space

is a product p, possibly equal to 0, that is the closest offered predecessor of i in T . Our

value function Vi(p) is the maximum adjusted revenue that can be achieved from subsets

of Ti when p is the closest offered predecessor of i.

Vi(p) = max{riPri({i})− riBp,i− rpBi,p +
∑
k∈Ci

Vk(i),
∑
k∈Ci

Vk(p)}. (3)

For leaves of T , our base case, this simplifies to Vi(p) = max{riPri({i})− rpBi,p− riBp,i,0}.

Theorem 1. Vi(p) = maxSi⊆Ti{A(Si, p)}.

Proof. We delay the proof to Appendix A. �

The special case of Theorem 1 when i= n and p= 0 shows that our dynamic program

computes the optimal solution to (1). We can now analyze the computational complexity

of computing the necessary Vi(j). Let D be the depth of T . The depth of a tree T is the

length of the longest path from the root to one of the leaves of the tree. We pre-compute

each Pri({i}) and Bi,j. The number of customer classes is |G|=O(nD) since linear paths

in the tree are uniquely determined by a starting and ending point in the tree. Each g ∈ G

contributes to at most D2 blocking values Bi,j, since |σg| ≤ D and we are interested in

pairs of nodes in σg. Each customer class also contributes to at most D singleton purchase

probabilities Pri({i}). Therefore, calculating the Pri({i}) and Bi,j values has running time

O(nD3). After this pre-computation, each of the O(nD) values Vi(j) can be computed in

constant time. This leads to an overall running time of O(nD3). For a full binary tree,

D= logn leading to a running time of O(n log3 n).

2.2. Extensions of the Dynamic Program

This dynamic program can be easily extended to incorporate additional considerations.

First, we focus on two cost considerations proposed in Honhon et al. (2012): a setup or

stocking cost incurred when offering a product and a substitution penalty incurred when

a customer is forced to substitute to less desirable products. To model setup costs we

introduce a constant fixed cost of ki for offering product i. To model the substitution

penalty we introduce a function f(l) that represents the penalty incurred when a customer

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 15

purchases their lth most preferred product. Specifically, if a customer of type g purchases

product i and l= σg(i) then the retailer incurs a penalty of f(l). In Honhon et al. (2012)

they assume that f(·) is linear and increasing; we consider arbitrary functions. We modify

our dynamic program to include these costs.

Similar to our previous blocking terms, we let

Peni =
∑

g∈G:i∈σg

λgf(σg(i))

be the sum of penalties the retailer incurs if assortment S = {i} is offered. When offering

i prevents a customer from substituting further down in their list, it can potentially lower

the total penalty. This inspires a notion of “blocking” similar to that which we introduced

in the previous section. Given any pair of nodes, we let

Qi,j =
∑

g∈G:πg({i,j})=i,πg({j})=j

λgf(σg(j))

be the penalty i blocks from j. We can now write the modified dynamic program:

Vi(p) = max{riPri(i)− riBp,i− rpBi,p− ki−Peni +Qi,p +Qp,i +
∑
k∈Ci

Vk(i),
∑
k∈Ci

Vk(p)}. (4)

For leaves of T , our base case, this simplifies to Vi(p) = max{riPri(i)−riBp,i−rpBi,p−ki−
Peni +Qi,p +Qp,i,0}. The value functions in (4) capture the adjusted revenue for product

i and all of its successors given that product p is the closest offered successor of i. Here,

riPri(i)− riBp,i− ki−Peni +Qp,i is the revenue received from i, modified to include costs

and penalties, when p is the closest offered predecessor and other products in Ti are not

offered.

Second, we consider the cardinality constrained assortment problem, in which the retailer

is restricted by a cardinality constraint and can offer at most C ≤ n products. For example,

C might be how many products are displayed on a website or the physical space allotted

to these products. In this problem setting, we will need an additional state space that

represents the remaining number of products in Ti that we have left to offer. Our value

functions Vi(p, c) will be the maximum adjusted revenue that can be achieved from subsets

of Ti by offering at most c products when p is the closest offered predecessor of i. The

modified dynamic programming recursion is as follows:

Vi(p, c) = max{riPri({i})− riBp,i− rpBi,p + max
cl,cr:cl+cr≤c−1

Vl(i, cl) +Vr(i, cr), (5)

max
cl,cr:cl+cr≤c

Vl(p, cl) +Vr(p, cr)}.

Feldman, Paul and Davis: Nonparametric Revenue Management
16 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

For leaves of T , our base case, this simplifies to

Vi(p, c) =

max{riPri({i})− riBp,i− rpBi,p,0} c > 0

0 c= 0
.

This inner maximization represents an optimal allocation of the remaining products to i’s

left and right children, which we represent as nodes l and r respectively.

3. Joint Assortment and Pricing

In the joint assortment and pricing problem, the retailer must simultaneously decide which

products to offer and the prices to charge for each of these offered products with the goal

of maximizing the expected revenue from each arriving customer. As defined in Section 2,

the general tree choice model does not explicitly capture consumer sensitivities to prices.

As a result, we add a budget, or willingness to pay, to the identifying characteristics of

each customer class. In this setting, each customer class g ∈ G is distinguished by an arrival

probability λg, a preference list σg, and a budget bg. We let m= |G|, which will be used in

analyzing our algorithm’s runtime. Let {b1, b2, . . . , bd} be the set of budgets for all customers

in G. We assume the budgets are indexed such that bi ≤ bi+1 for all i = 1, . . . , d− 1. An

arriving customer will purchase the highest ranking product that is priced within her

respective budget, if any.

To formally define our joint assortment and pricing problem, suppose again we have

products N = {1,2, . . . , n}. The retailer must choose a price for each product with the goal

of maximizing the expected revenue from each arriving customer. If a customer purchases

product i priced at p ∈ R+, then the retailer makes a revenue of p− ci, where ci is the

fixed unit cost of acquiring one unit of product i. We represent our pricing decisions as the

vector P = (p1, p2, . . . , pn)∈Rn
+, where pi is the price that we charge for product i. We use

the convention that setting pi =∞ is equivalent to not offering the product. If the retailer

sets prices P, then a customer of type g will purchase product πg(P) := arg minl∈σg :pl≤bg l.

Therefore, the probability product i is purchased under prices P is

Pri(P) =
∑

g∈G:πg(P)=i

λg.

We can find the optimal assortment and prices to offer by solving the problem

OPTp = max
P∈Rn+

∑
i∈N

(pi− ci)Pri(P). (6)

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 17

In Section 1 of the Online Appendix, we show that we can simplify the problem by noting

that there exists an optimal pricing scheme P∗ to problem (6) where P ∈ {b1, . . . , bd, bd+1}n,

where bd+1 =∞. This shows that we can optimally solve problem (6) by only considering

a finite menu of prices. Note that the number of budgets cannot exceed the number of

customer classes so d=O(m). For the remainder of this paper, we say that product i is

priced at level j to mean that pi = bj. Further, we use ri,j = bj− ci to represent the revenue

when product i is priced at price level j.

It is easy to see that the joint assortment and pricing problem generalizes the standard

assortment optimization problem from Section 2.1, and thus problem (6) presents new

difficulties. As a result, we consider the problem for two special cases. We first consider

the case when all preference lists are derived from a tree that is a single path on the

products. We rename this model the interval model, since the preference lists derived from

the aforementioned tree structure can be viewed as intervals of consecutive integers when

the products are indexed appropriately. For the interval model, we develop a novel dynamic

programming approach that is completely distinct from the approach given in Section

2.1. In Section 2 of the Online Appendix, we consider the case when we have a general

tree model, but are restricted in that the set of feasible pricing policies must be quality

consistent within the tree structure, i.e., the price of any product offered is at most the

price of any of its predecessors. In this case, we show that the optimal prices can be derived

from the dynamic programming idea that we developed for the pure assortment problem.

3.1. Pricing with the Interval Model

In the interval model, we assume that products are indexed by decreasing quality, so that

product 1 has the highest quality and product n the lowest, and that customers come

in considering a quality interval. This quality interval represents the range of qualities of

a particular product that a customer is potentially willing to purchase. For example, we

might have a customer that just considers the top quality product. In contrast, we might

have another customer that will consider only mid-quality to low-quality products. This

may be because the products of higher quality can sometimes come with a trade-off such

as ease of use or weight. For example, an average user may not be able to easily use a

high-end camera and a backpacker may not want the added bulk of high-end luggage or the

possibility of it being stolen. Such a scenario could be derived from a conjunctive screening

rule with lower thresholds for quality or ease. To model such a scenario in our setting,

Feldman, Paul and Davis: Nonparametric Revenue Management
18 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

each customer class g is characterized by a budget bg and preference list σg of the form

[i, i+ 1, . . . , j] with 1≤ i≤ j ≤ n. It is through these preference lists that we capture the

quality interval of each customer class. Our algorithm extends if we also allow preference

lists in opposite order, that is of the form [i, i−1, i−2, . . .]. However, for ease of exposition,

we ignore these potential customer classes.

The dynamic program that we develop focuses on the optimal way to price subintervals

of products. As we price products, we continuously partition our intervals into smaller and

smaller non-intersecting subintervals, which admit independent pricing problems. At the

heart of our dynamic program formulation is the recursive manner with which we are able

to stitch together the optimal pricing schemes for each interval while correctly accounting

for the accrued revenue as we do so. To further build intuition, suppose that we start by

pricing product l at price level 1, the lowest price level. If we decide to price every product

k < l at a price level above 1, then we know that all customers g ∈ G with l ∈ σg and bg = b1

will purchase product l irrespective of the other pricing decisions. This fully accounts for

all customers purchasing product l with budget b1. We can now consider pricing products

with index smaller than l at price levels b2 and higher. On the other hand, products indexed

higher than l can still potentially be purchased at b1, but these purchases will be made by

customers whose interval starts after product l. Therefore, l acts as a breakpoint in the

interval, and we can show that the problem decomposes by the products indexed higher

and lower than this point.

In particular, let Vi,j(k1, k2), for all 1≤ i, j ≤ n and 1≤ k1 ≤ k2 ≤ d, be the value functions

of our dynamic program. The value function represents the maximum expected revenue

that can be accrued from customers whose highest ranked product is in the interval [i, i+

1, . . . , j], when:

• the price level charged for product j+ 1 is k1. If j = n, we write k1 = ∅,
• we only account for customers with a budget that is at least bk2, and

• we price each product in the interval [i, i+ 1, . . . , j] at a price level of k2 or higher.

Note that V1,n(∅,1) gives the optimal expected revenue for problem (6). We can calculate

Vi,j(k1, k2) using the following dynamic program

Vi,j(k1, k2) = max{
∑

g∈G:σ−1
g (1)≥i,j+1∈σg ,bg=bk2

λg · rj+1,k1 +Vi,j(k1, k2 + 1), (7)

max
l:i≤l≤j

[
∑

g∈G:σg(l)=1,bg=bk2

λg · rl,k2 +Vi,l−1(k2, k2) +Vl+1,j(k1, k2)]}

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 19

with the base cases

Vi,i−1(·, ·) = 0 and Vi,j(·, d+ 1) = 0.

The two cases in the maximum of the dynamic program given in (7) correspond to our

decision of whether or not to price a product in the interval [i, i+ 1, . . . , j] at level k2. The

first case corresponds to not pricing any of these products at level k2. In this case, each

customer class g ∈ G such that σ−1g (1)≥ i and j+ 1∈ σg whose budget is bk2 will purchase

product j+ 1 at price bk1. For the interval [i, i+ 1, . . . , j], we move on to considering prices

and budgets at the k2 + 1 price level. In the second term, we make the decision to price

one of the products in the interval [i, i+ 1, . . . , j] at price level k2. The inner maximization

finds the best product l to price at such a level. When we make this decision, we know

that all customers g ∈ G such that σg(l) = 1 with budget bg = bk2 will purchase product l

at bk2. We then decompose the problem into disjoint intervals [i, . . . , l−1] and [l+ 1, . . . , j]

whose optimal expected revenues can be computed separately. Since product l is priced at

level k2, we update the first entry of the state space to k2 for the left interval.

Theorem 2. V1,n(∅,1) = OPTp.

Proof. We delay the proof to Appendix A. �

4. Computational Experiments

In this section, we provide computational experiments which demonstrate the efficiency

of the dynamic program presented in (4) to solve the costed assortment problem. We

benchmark ourselves against the algorithm provided for intrees in Honhon et al. (2012).

This algorithm has a theoretical runtime that is exponential is the number of products,

but has been been shown to work far better in practice. Since this algorithm is only valid

when applied to problems in which the least preferred product of all customer types is the

root node, we restrict our computational experiments to cases of this nature.

4.1. Experimental Setup

In our computational experiments we generate a number of intree instances to test the

efficacy of our dynamic program. For each instance, we solve the costed assortment problem

using two different strategies. The first strategy utilizes the dynamic program given in (4),

which we refer to as DP. The second approach uses the algorithm given in Honhon et al.

(2012), which we refer to as ALG3 since it is labeled Algorithm 3 in this paper. Our goal is

Feldman, Paul and Davis: Nonparametric Revenue Management
20 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

to compare the performance of DP and ALG3 by measuring the respective CPU seconds

required to solve each instance of the assortment problem.

We generate each of the intree instances in the following manner. Each of the instances

that we consider consists of customer classes derived from a complete binary tree. In other

words, the total number of nodes or products in each intree is n = 2D − 1, and we vary

the number of levels in the tree D ∈ {3,4, . . . ,9,10}. Since ALG3 is only valid when the

least preferred product of each customer is the root node, we restrict the set of customer

classes derived from each intree to be of this variety. For each instance, we consider all n

customer types and assume that each type arrives with equal probability. The revenues of

each products are generated uniformly from the interval [0, n]. Once the revenues have been

generated for a given problem instance, we then generate a fixed cost ki for each product

i ∈N uniformly over the interval [0, rmin], where rmin is the smallest randomly generated

revenue for the given instance. In this way, we ensure that the cost of offering a product

never exceeds the revenue gained from a sale of the product. We leave out substitution

costs since they do not necessarily complicate the assortment problems we study.

4.2. Computational Results

Table 2 summarizes our computational results. In all cases we used Python 2.7 on a Dell

with an Intel Core i7-2600 Processor with 2.4 GHz and 8GB of RAM. The first column

gives the number of levels in the intrees that we consider. For each value of D, we generate

100 unique intrees using the method described in the previous section. The second column

gives the average CPU seconds required for DP to solve the 100 instances, and the third

column gives the maximum CPU seconds for DP over these 100 instances. Columns 4 and

5 give the same two statistics for ALG3.

The results in Table 2 indicate that DP significantly outperforms ALG3 in both average

performance and worst case performance. Most notably, we confirm that DP does in fact

scale polynomially with the number of nodes, while ALG3 appears to be on more of an

exponential trajectory. Further, for DP, we observe that the maximum runtime is at most

25% larger than the average runtime over all values of D. On the contrary, when D = 7,

the maximum runtime for ALG3 exceeded the average runtime by over 2500%. Since the

maximum runtime appears to be growing exponentially with D, it was not possible to get

a sense of how ALG3 performs on the bigger instances with D> 7. On the other hand, DP

solves instances of the costed assortment problem with over 1000 products in fractions of

a second.

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 21

Table 2 Comparing runtimes of DP and ALG3.

DP ALG3
D Avg Secs. Max Secs. Avg Secs. Max Secs.
3 2.6×10−4 3.2×10−4 4.4×10−4 1.0× 10−3

4 7.7×10−4 8.9×10−4 1.9×10−3 0.017
5 2.1×10−3 2.3×10−3 0.011 0.089
6 5.4 ×10−3 5.7 ×10−3 1.00 30.78
7 0.014 0.015 9.92 262.5
8 0.033 0.035 NA NA
9 0.081 0.084 NA NA

10 0.19 0.20 NA NA

Comparing DP and ALG3 in terms of CPU seconds required

to solve the costed assortment problem.

5. Estimating the General Tree Model

In this section, we provide computational experiments that demonstrate that the general

tree model is more effective at capturing customer behavior than the well-known MNL

model in two distinct settings. In the first setting, we compare the two models on synthetic

data generated from general nonparametric choice models whose underlying preference lists

start as a tree in our initial test cases but become progressively more noisy and random in

later test cases. In this way, we are not only able to show that we are able to accurately

recapture an underlying general tree model, but we also show that the general tree model

performs quite well even when the retailer’s understanding of the choice process is only

vaguely accurate. Our main finding is that when assortment decisions are made based on

fitted general tree models rather than fitted MNL models, the increase in profits can be

as high as 20%. In the second setting, we compare the fitted general tree model versus the

fitted MNL model on real sales data from two different hotels. We show that for this data

set, the fitted general tree model has log-likelihoods that are on average slightly higher

than that of the fitted MNL model.

Our estimation procedure for fitting the general tree model has two stages. Given a set

of sales data, we first use a greedy heuristic described in the next section to construct

the tree T that determines the set of feasible preference lists for our general tree model.

Next, we derive the fitted general tree model and the fitted MNL model through maximum

likelihood estimation (MLE). We use NP and ML to denote the fitted general tree model

and MNL model respectively. In an effort to fit sparser choice models, we build the tree

by only considering customer types associated with linear paths that move away from the

root. In other words, we build generalized outtrees in which the most preferred product of

any customer type can be any product in the tree.

Feldman, Paul and Davis: Nonparametric Revenue Management
22 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

5.1. Building and Fitting the General Tree Model

We now describe how we build the tree T of products that is used to construct the prefer-

ence lists of the general tree model. We assume that we have access to the past purchase

history of τ customers. We represent this purchase history as the set PH = {(St, zt) : t=

1, . . . , τ}, where St is the assortment of products offered to customer t and zt is the product

purchased by this customer. We set zt = 0 if customer t selects the no-purchase option. We

use a greedy heuristic that incrementally adds nodes to the existing tree with the goal of

maximizing the number of customer classes that could have arrived in each period. Specif-

ically, let T i be the tree in iteration i of the greedy procedure and let G(T i) be the set

of customer types that can be derived from the tree T i. For a customer that was offered

assortment S and purchased product z, we say that customer class g could have arrived if

πg(S) = z. For a given tree T i, we let I(T i) =
∑τ

t=1

∑
g∈G(T i) 1πg(St)=zt be the total number

of customer classes that could have arrived over the τ customer arrivals when the set of

preference lists is derived from the tree Ti. We use the function I(T i) as a proxy for how

well the given tree explains the historical sales data.

Let the set ∪̂ represent all insertions of product j /∈ T i into the current tree Ti that main-

tain the desired tree structure. In iteration i+1 of the greedy heuristic, we find the best way

to add the next product into the tree by setting (j∗,∪∗) = arg maxj∈N\T i arg max∪∈∪̂ I(T i∪

{j})/|G(T i∪{j})|p through complete enumeration. We then set T i+1 = T i∪∗ {j∗}. We con-

tinue in this manner for n− 1 iterations, at which point we will have placed all of the

products in the tree. Notice that we normalize I(·) by the number of customer classes

that can be derived from the tree raised to a power p. By varying p, we show that we can

control the depth of the tree that we discover. Choosing to build the tree with a smaller

value of p will lead to trees with larger depths. These trees have will have a larger number

of customer types whose preferences closely follow some universal ranking of the products,

since there will be little branching in these trees. On the other hand, trees built with a

larger value of p will have smaller depths and hence quite a bit of branching. These trees

will have fewer customer types, but a greater heterogeneity in the preference lists. In our

computational experiments, we vary p∈ {0,0.5,1} and for each fitted model we report the

average depth of the trees that our heuristic finds. In Section 3 of the Online Appendix,

we provide an example of running this greedy heuristic and we also give one of the trees

produced from our heuristic on the hotel data set.

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 23

Now that we have built the tree from the past purchase history, we need to estimate

the arrival probabilities for all possible paths. For a given tree T , the log-likelihood can be

expressed as a function of the arrival probabilities (λ1, . . . , λm). We write the log-likelihood

of the training set as L(λ) =
∑τ

t=1 log
∑

g∈G(T) λg1πg(St)=zt . Note that it is immediately

obvious that the log-likelihood is concave and thus maximum likelihood estimation will

be tractable. In our computational experiments, we use MATLAB’s built in non-linear

constrained solver fmincon to get our maximum likelihood estimates. Since we estimate

models with at most O(n2) customer classes this approach is highly efficient.

5.2. Known Ground Choice Model

In this set of computational experiments, we generate the historical sales data from a

nonparametric choice model that differs significantly from the general tree model in most

of the test cases. We refer to the model that generates the sales data as the ground truth

choice model. In the ground truth choice model, the set of customer types is given by

G = {1, . . . ,m}. The preference list and arrival probability of each customer class g ∈ G
are respectively given by σg and λg. To generate the arrival probabilities (λ1, . . . , λm), we

set λg = 1/m so that each customer class arrives with equal probability. Our approach for

generating the preference lists is motivated by a setting in which a retailer sells a set of

vertically differentiated products, meaning there is an overarching ordering on the qualities

of the products. To start, we associate a quality interval, as described in Section 3, with

each customer class. In order to better capture a true heterogeneous customer population,

we introduce noise into the ordering of the products. Specifically, we assume that some

customers drop items from their respective quality interval. In addition, we also allow for

customers to have slight deviations from the overarching quality rankings. In particular, we

assume that the ordering of products in a quality interval can be flipped. By including such

idiosyncrasies, the preference lists of the underlying customer population differ significantly

from any set that could be generated from a general tree model.

To be more specific, the following procedure was used to generate the preference list

for each customer class. We assume that product 1 has the highest quality and product n

has the lowest quality. For each customer class g ∈ G, we first generated an initial quality

interval qg = [ig, . . . , jg]. The most preferred product ig is generated uniformly from the

set {1, . . . , n}, and the least preferred product jg is then generated uniformly from the

set {ig, . . . , n}. We then drop each product k ∈ qg with probability pd. We update qg to

Feldman, Paul and Davis: Nonparametric Revenue Management
24 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

be the resulting preference list. Finally, we consider F flip events on qg, which are each

executed with probability 0.5. If a flip event is executed, we uniformly sample a product

k ∈ qg and flip its ordering with the product ranked immediately ahead of it. We repeat

the above procedure until we have generated m unique preference lists. To ensure that

we consider a diverse array of underlying ground truth choice models, we vary (pd,F) ∈

{0,0.25,0.5}× {0,2,4}. Note that when pd = 0 and F = 0, we recover the preference lists

of the interval model described in Section 3. We include this combination of parameters

in our computational experiments to show that when the ground truth choice model is a

general tree model, then we significantly outperform the MNL model.

In all the computational experiments, we set the number of products to n = 10 and

the number of customer classes to m= 20. Once the ground truth choice model has been

generated, we then generate the historical sales data under the assumption that the pur-

chasing behavior of each arriving customer is governed by the ground truth choice model.

We assume that we have access to the past purchasing history of τ customers. Recall that

we represent this purchasing history as the set PH = {(St, zt) : t = 1, . . . , τ}, where St is

the assortment of products offered to customer t and zt is the product purchased by this

customer. We sample the subsets St such that each product is included in the assortment

with probability 0.75. The class gt that customer t belongs to is sampled from the distri-

bution (λ1, . . . , λm). Given that the ground truth choice model is a nonparametric choice

model, we set zt = arg mini∈St σgt(i).

For each choice of pd and F , we generate 10 ground truth choice models. Then, for each

of these choice models we generate 10 past purchase histories with τ = 2500. Lastly, for

each of these past purchase histories we generate 100 different possible revenues for the

products where the revenue of each product is generated uniformly at random from the

interval [0,100]. This gives us 9× 10× 10× 100 = 90,000 data sets where data set Dk is

associated with a purchase history PHk and a set of revenues (rk1 , . . . , r
k
n).

We test the efficacy of the fitted models by computing the optimal assortment recom-

mended by each of the fitted models under the assumption that choice is governed by the

fitted model. We then test the performance of these recommended assortments under the

ground truth choice model. We also compare how well the two fitted models predict future

buying behavior by computing the log-likelihoods of each fitted model on a testing set of

sales data.

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 25

We first find the optimal assortments under the assumption that customer choice is

governed by each of the fitted models. Suppose on a data set Dk generated from ground

truth choice model GC, we have fitted models NP and ML. For CM ∈ {NP,ML,GC},

let PCM
i (S) be the probability that product i is purchased under choice model CM. We

compute the optimal recommended assortment under the fitted general tree model as

Sk(NP) = arg maxS⊆N
∑

i∈N r
k
i P

NP
i (S) and the optimal assortment under the fitted MNL

model as Sk(ML) = arg maxS⊆N
∑

i∈N r
k
i P

ML
i (S). We then check the performance of these

assortments by computing how well these assortments perform under the ground truth

choice model, which is assumed to be reality. In particular, we compute expected revenues

Rk(NP) =
∑

i∈N r
k
i P

GC
i (Sk(NP)) and Rk(ML) =

∑
i∈N r

k
i P

GC
i (Sk(ML)). For each ground

truth choice model, we store the average expected revenue of the recommended assortments

over the data sets for both of the fitted models.

Param. Comb.

p (0, 0) (0,0.25) (0, 0.5) (2, 0) (2,0.25) (2, 0.5) (4, 0) (4,0.25) (4, 0.5)

0 17.00 11.50 12.73 16.17 12.11 11.75 13.42 10.79 12.07

0.5 16.50 10.73 12.38 15.09 10.76 10.99 12.07 9.62 11.31

Table 3 The average percentage improvement in expected revenue of the general tree choice model over the

MNL model for p= 0 and p= 0.5.

Table 3 compares the predictive powers of the general tree model and the MNL model

over the various parameter combinations given in Columns 2-10. The numbers reported

are the percentage gains in the expected revenue of the recommended assortment of the

fitted general tree model compared with the fitted MNL model averaged over the data

sets. So for the ground truth choice models generated with F = pd = 0, the assortments

recommended by the general tree model fit with p= 0 have expected revenues that are on

average 17% higher than the expected revenues of the assortments recommended by the

fitted MNL models. Overall, it is clear from Table 3 that the assortments recommended by

the fitted general tree model are far more profitable than the assortments recommended by

the fitted MNL models. For the trees fit with p= 0, the average percentage gain across all

parameter combinations never drops below 10%. For the trees fit with p= 0.5, the smallest

average is 9.62%. Further, there are instances for which the improvements of the general

tree model exceed 20% and there is only a single instance for which the average percentage

Feldman, Paul and Davis: Nonparametric Revenue Management
26 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

improvement is below 5%. Last, we expect that as p increases, the depth of the fitted tree

decreases. This turns out to be exactly what we observe: when p= 0 the average depth is

10 (always builds an interval model) and when p = 0.5 the average depth is 8.47 with a

standard deviation of 1.21 and we get quite a diverse array of trees. Generally, the trees

built with p = 0 only perform slightly better than the trees built with p = 0.5, which is

somewhat surprising considering that the trees built with p = 0 have significantly more

customer types. The ability to fit trees of varying depth could be especially useful when the

number of products is too large to estimate the O(n2) parameters of the interval model. In

Section 3 of the Online Appendix, we show that the predictive power of both fitted models

are comparable as measured by an out-of-sample log-likelihood.

5.3. Hotel Data Set

In this section, we compare the general tree model and the MNL model on the hotel

bookings data set provided in Bodea et al. (2009). This data set consists of bookings at 5

different hotels made from March 12, 2007 to April 15, 2007 made primarily by business

customers through online channels or customer relationship employees. We decide to focus

only on Hotels 1 and 3 since the number of purchases in the sales data at these two hotels

exceeds the purchases at the other three hotels by a factor of five. Each hotel offers a variety

of rooms (suite, king, queen, etc . . .) at differing rates based on additional accommodations

that the room might come with. For example, Hotel 1 offers a King Room both at Rate

1 and at Rate 5. The former is a discounted advanced purchase rate and the latter is a

rate that includes city activities such as dining and shopping. Since the price for a specific

room varies by its accompanying rate, we treat each room type and rate tuple as a different

product. We discard products that have fewer than 5 purchases throughout the selling

horizon. This notion of a product differs from the works of Vulcano et al. (2016) and

Vulcano and van Ryzin (2015)), who also use this data to fit nonparametric choice models.

In these works, a product is simply a room type, and then, in order to capture the effect

of the various rates, the authors assume that customers always buy up within the same

room type. The upside of our approach is that we capture a more granular view of choice.

However, in modeling a product as a room-rate tuple we have more products and hence

more parameters to estimate. To control for overfitting, we perform a rigorous 10-fold cross

validation procedure, which we describe later in this section.

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 27

The data set provides detailed information about the set of products that were offered

and the product that was purchased at the time of each booking booking. Consistent with

the other works that use this data set, we restrict our study to bookings for which there is

at least one transaction per product and for which the observed purchase comes from the

available options. Hotel 1 ends up with 33 products and 1,267 bookings and Hotel 3 ends

up with 30 product and 1,109 bookings. Since the data set only gives booking information,

there are no data points for which the no-purchase option is selected. To make up for

this deficiency in the data set, for each booking record we generate np∈ {0,1, . . . ,10} no-

purchase records. In this way, we can study the performance of the various choice models

for varying levels of no-purchase tendencies.

We index each of the data sets we fit using the the tuple (h,np)∈ {1,3}×{0,1, . . . ,10},

in which the first entry h corresponds to the hotel that we consider and the second entry

np gives the number of additional no-purchase bookings we add for each booking record.

For each data set, we perform 10-fold cross validation to compare the out-of-sample per-

formance of the MNL model to the general tree model. To do so, we randomly partition

each data set into ten equal segments. Nine of the ten segments make up the training data

set, while the remaining segment is used for testing. For each test case (h,np), we build

three trees by varying the normalizing constant p∈ {0,0.5,1}. We fit the MNL model and

the three general trees using MLE on the training data set and then measure the accuracy

of these fitted models using the log-likelihood of the testing sets. Of the three general tree

models that we fit, we only test the tree model that has the largest training log-likelihood.

We repeat this procedure ten times so that each segment is the testing set at one point.

Then, for each data set, we repeat this 10-fold cross validation ten times to ensure that

our results are robust to the randomization that occurs within the cross validation. We

average the test log-likelihoods over the ten trials and the ten folds.

The average percentage improvements in log-likelihood of the fitted general tree model

over the MNL choice model are given in Table 4. For lower values of np, the MNL provides

slight improvements over the general tree model. However, as np increases the general tree

model appears to dominate. Even though we improve over the MNL model by only a few

fractions of a percent, these results are nonetheless surprising in light of the performance

of the most general nonparametric model on these same data sets presented in past stud-

ies. Specifically, the work of Vulcano and van Ryzin (2015) shows that the MNL model

Feldman, Paul and Davis: Nonparametric Revenue Management
28 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

of addition no-purchase events

Hotel # 0 1 2 3 4 5 6 7 8 9 10

Hotel 1 -1.93 -1.08 -0.32 -0.03 -0.04 0.27 0.36 0.33 0.41 0.49 0.49

Hotel 3 0.49 -1.21 0.22 0.24 -0.56 -0.03 -0.02 0.08 0.20 0.14 0.25

Table 4 Percentage improvement in log-likelihood of the general tree choice model over the MNL model on

the hotel datasets.

outperforms the general nonparametric model for all 5 hotels on a likelihood-based metric

which is normalized by the number of parameters fitted. Our results show that there can

be benefits to imposing specific sparse structures on the set of preference lists in settings

in which there is clearly some notion of feature differentiation among the products. The

tree model seems to be a valid candidate for imposing this structure.

Last we note that trees with p= 1 are the best fitting trees over 75% of the time, which

is fairly surprising since the trees fit with p = 0 have significantly more customer types.

These results are in stark contrast to our results for the synthetic data in which the trees

built with p= 0 generally performed the best. We turn to the underlying structure of the

ground choice model to explain this trend. In the first set of experiments, the ground choice

is assumed to be some slight perturbation of the interval model, which has depth n. As a

result, it is no surprise that setting p= 0 performs best. In this second set of experiments,

the fact that trees with smaller depths perform better in this setting indicates that there

are a diverse array of preferences for hotel rooms among travelers.

6. Conclusion

In this paper, we introduce the general tree customer choice model. We begin by studying

the assortment problem. We give the first polynomial-time algorithm to solve the general

tree case for linear customer classes. We formulate this problem as a dynamic program in

which the offer decision for each product can be made by simply storing each node’s closest

offered predecessor. Further, our dynamic programming formulation extends naturally for

the cardinality constrained assortment problem and costed assortment problem. We then

study the joint assortment and pricing problem under special cases of the general tree

model. We develop novel dynamic programming approaches that additionally reveal nice

structural results of the optimal pricing scheme. We conclude our analysis by providing

a series of computational experiments that validate the use of the general tree model in

practice. As shown, the sparsity of this model admits tractable estimation and optimization

problems while capturing more complex customer behavior than the MNL model.

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 29

References

Aggarwal G, Feder T, Motwani R, Zhu A (2004) Algorithms for multi-product pricing. International Collo-

quium on Automata, Languages, and Programming, 72–83.

Aouad A, Farias V, Levi R (2015a) Assortment optimization under consider-then-rank choice models, unpub-

lished manuscript.

Aouad A, Farias V, Levi R, Segev D (2015b) The approximability of assortment optimization under ranking

preferences, unpublished manuscript.

Blanchet J, Gallego G, Goyal V (2016) A markov chain approximation to choice modeling. Operations

Research 64(4):886–905.

Bodea T, Ferguson M, Garrow L (2009) Data set: Choice-based revenue management: Data from a major

hotel chain. Manufacturing & Service Operations Management 11(2):356–361.

Davis J, Gallego G, Topaloglu H (2013) Assortment planning under the multinomial logit model with totally

unimodular constraint structures, unpublished manuscript: available at

http://legacy.orie.cornell.edu/∼huseyin/publications/publications.html.

Davis J, Gallego G, Topaloglu H (2014) Assortment optimization under variants of the nested logit model.

Operations Research 62(2):250–273.

Desir A, Goyal V (2013) An FPTAS for capacity constrained assortment optimization. Technical report,

Columbia University, School of Industrial Engineering and Operations Research.

Feldman J, Topaloglu H (2015) Capacity constraints across nests in assortment optimization under the nested

logit model. Operations Research 63(4):812–822.

Gallego G, Topaloglu H (2014) Constrained assortment optimization for the nested logit model. Management

Science 60(10):2583–2601.

Gilbride T, Allenby G (2004) A choice model with conjunctive, disjunctive, and compensatory screening

rules. Marketing Science 23(3):391–406.

Honhon D, Pan X, Sreelata J (2012) Optimal algorithms for assortment selection under ranking-based

consumer choice models. Manufacturing and Service Operations Management 14(2):279–289.

Hosseinalifam M, Marcotte P, Savard G (2015) Network capacity control under a nonparametric demand

choice model. Operarions Research Letters 43(5):461–266.

Li G, Rusmevichientong P (2014) A greedy algorithm for the two-level nested logit model. Operations

Research Letters 42(5):319–324.

Li G, Rusmevichientong P, Topaloglu H (2015) The d-level nested logit model: Assortment and price opti-

mization problems. Operations Research 63(2):325–342.

Mahajan S, van Ryzin G (2001a) Inventory competition under dynamic consumer choice. Operations Research

49(5):646–657.

Feldman, Paul and Davis: Nonparametric Revenue Management
30 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Mahajan S, van Ryzin G (2001b) Stocking retail assortment under dynamic consumer substitution. Opera-

tions Research 49(3):334–351.

Mendez-Diaz I, Bront J, Vulcano G, Zabala P (2010) A branch-and-cut algorithm for the latent-class logit

assortment problem. Electronic Notes in Discrete Mathematics 36:383–390.

Rusmevichientong P, Roy BV, W P (2006) A nonparametric approach to multiproduct pricing. Operations

Research 54(1):82–98.

Rusmevichientong P, Shen Z, Shmoys D (2010) Dynamic assortment optimization with a multinomial logit

choice model and capacity constraint. Operations Research 58(6):1666–1680.

Rusmevichientong P, Shmoys D, Tong C, Topaloglu H (2014) Assortment optimization under the multinomial

logit model with random choice parameters. Production and Operations Management 23(11):2023–2039.

Rusmevichietong P, Jagabathula S (2015) A nonparametric joint assortment and price choice model, unpub-

lished manuscript.

Talluri K, van Ryzin G (2004) Revenue management under a general discrete choice model of consumer

behavior. Management Science 50(1):15–33.

Vulcano G, van Ryzin G (2015) A market discovery algorithm to estimate a general class of non-parametric

choice model. Management Science 61(2):281–300.

Vulcano G, van Ryzin G, Ratliff R (2016) An expectation-maximization method to estimate a rank-based

choice model of demand. Operations Research .

Wang R (2012) Capacitated assortment and price optimization under the multinomial logit model. Operations

Research Letters 40:492–497.

Wang R (2013) Assortment management under the generalized attraction model with a capacity constraint.

Journal of Revenue and Pricing Management 12(3):254–270.

Appendix A: Proofs

A.1. Proof of Proposition 1

Proof. First, suppose i ∈ S. Then, δp(Si ∪ {p}) = {i} since it is the only node in Si for which p is the

closest offered predecessor, i.e. φi(Si ∪{p}) = p. We have

A(Si, p) =
∑
j∈Si

rjPrj(Si ∪{p})− rp
∑

k∈δp(Si∪{p})

Bk,p

=
∑
j∈Si

rj

Prj({j})−Bφj(Si∪{p}),j −
∑

k∈δj(Si∪{p})

Bk,j

− rpBi,p
= riPri({i})− riBp,i− rpBi,p +

∑
j∈Si\{i}

rjPrj(Si ∪{p})− ri
∑

k∈δi(Si∪{p})

Bk,i

= riPri({i})− riBp,i− rpBi,p +
∑

j∈Si\{i}

rjPrj(Si)− ri
∑

k∈δi(Si)

Bk,i

Feldman, Paul and Davis: Nonparametric Revenue Management
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 31

where the second line follows from (2) and the last line comes from the fact that for each j ∈ Si \ {i}, the

closest predecessor of j is not p (since i is offered) and so Prj(Si ∪{p}) = Prj(Si).

We can simplify this expression further. The set Si can be decomposed into {i} and two additional sets:

Sl = Si∩Tl and Sr = Si∩Tr. Let j ∈ Si \{i}. Without loss of generality, let j ∈ Tl. Then, φj(Si) = φj(Sl∪{i})

since its closest predecessor must be i or in the same subtree as j. This also shows δj(Si) = δj(Sl ∪{i}) and

Prj(Si) = Prj(Sl∪{i}). Lastly, we can easily see that δi(Si) = δi(Sl∪{i})∪ δi(Sr ∪{i}). Continuing from the

above expression, these observations allow us to write

A(Si, p) = riPri({i})− riBp,i− rpBi,p

+
∑
j∈Sl

rjPrj(Sl ∪{i})− ri
∑

k∈δi(Sl∪{i})

Bk,i

+
∑
j∈Sr

rjPrj(Sl ∪{i})− ri
∑

k∈δi(Sr∪{i})

Bk,i

= riPri({i})− riBp,i− rpBi,p +A(Sl, i) +A(Sr, i)

= riPri({i, p})− rpBi,p +A(Sl, i) +A(Sr, i)

=A({i}, p) +A(Sl, i) +A(Sr, i).

The last inequality follows by the definition of the adjusted revenue and noting that δp({i, p}) = p. By very

similar analysis, when i /∈ S we get A(Si, p) =A(Sl, p) +A(Sr, p).

Therefore, by unraveling the recursion given in the statement of the proposition we get that:

A(S,0) =
∑
i∈S

A({i}, φi(S)) =
∑
i∈S

riPri({i})− riBφi(S),i− rφi(S)Bi,φi(S) =
∑
i∈S

riPri(S) =R(S),

where the second to last equality follows by equation (2). �

A.2. Proof of Theorem 1

Proof. First, consider the base case. For the leaves of T , Vi(p) = max{riPri({i})−rpBi,p−riBp,i,0}. This

first term is equivalent to A({i}, p) since riPri({i, p}) = riPri({i})− rpBi,p and the second term is A(∅, p) so

the claim holds.

Now consider a node i that is not a leaf and suppose that the claim holds for all successors of i. Let l and

r be the left and right children of i, respectively. Let S∗i ⊆ Ti be a subset that maximizes A(Si, p). In the

first case, suppose i ∈ S∗i . Then, δp(S
∗
i ∪ {p}) = {i} since it is the only node in S∗i for which p is the closest

offered predecessor, i.e. φi(S
∗
i ∪{p}) = p. From Proposition 1, we have that

A(S∗i , p) = riPri({i})− riBp,i− rpBi,p +A(S∗l , i) +A(S∗r , i).

Noting that S∗i is the maximizer of Vi(p) and that A(S∗l , i) and A(S∗l , i) are completely independent since

they do not share any successors in the tree, we see that we can express our optimization problem recursively:

max
Si⊆Ti:i∈Si

A(Si, p) = riPri({i})− riBp,i− rpBi,p + max
Sl⊆Tl

A(Sl, i) + max
Sr⊆Tr

A(Sr, i)

= riPri({i})− riBp,i− rpBi,p +Vl(i) +Vr(i)

where we have used the inductive hypothesis.

Feldman, Paul and Davis: Nonparametric Revenue Management
32 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

By very similar analysis, when i /∈ S∗i we get

max
Si⊆Ti:i/∈Si

A(Si, p) = max
Sl⊆Tl

A(Sl, p) + max
Sr⊆Tr

A(Sr, p) = Vl(p) +Vr(p).

By combining these expressions we reach the desired claim

max
Si⊆Ti

A(Si, p) = max{ max
Si⊆Ti:i/∈Si

A(Si, p), max
Si⊆Ti:i∈Si

A(Si, p)}

= max{riPri({i})− riBp,i− rpBi,p +
∑
k∈Ci

Vk(i),
∑
k∈Ci

Vk(p)}.

�

A.3. Proof of Theorem 2

Proof. We prove the result by proving the correctness of the dynamic program given in (7) through an

inductive argument. The base cases hold trivially. We will now prove the correctness of the dynamic program

for arbitrary value function Vi,j(k1, k2). The base cases give rise to the following induction hypothesis. We

can assume that the value function Vi′,j′(k1, k
′
2) are correctly computed for the following combinations of

i′, j′, and k′2: i′ = i, j′ = j, k′2 = k2 + 1 and i≤ i′, j′ ≤ j, k′2 = k2.

Suppose that we decide not to price any product in the interval [i, i+ 1, . . . , j] at price level k2. Then,

customers g ∈ G such that σ−1g (1)≥ i and j+ 1∈ σg with budget bg = bk2 will purchase product j+ 1 at price

bk1 . From these customers we gain an expected revenue of∑
g∈G:σ−1

g (1)≥i,j+1∈σg,bg=bk2

λg · rj+1,k1 .

It remains to maximize the expected revenue from customers g ∈ G such that i ≤ σ−1g (1) ≤ j and whose

budget is at least bk2+1. Since we have decided not to price any of these products at price level k2, we can

now consider price levels k2 + 1 and higher for such customers. By our induction hypothesis, this expected

revenue is given by Vi,j(k1, k2 + 1) since product j+ 1 is still priced at level k1. Combining both terms gives

exactly the first term in the maximization of our dynamic program given in (7):∑
g∈G:σ−1

g (1)≥i,j+1∈σg,bg=bk2

λg · rj+1,k1 +Vi,j(k1, k2 + 1).

Otherwise, let product l be priced at level k2. Note that the inner maximization over l ensures that we

choose the optimal product to price at level k2. Then, any customer class g ∈ G such that σg(l) = 1 and

budget bg = bk2 will purchase product l. This generates expected revenue∑
g∈G:σg(l)=1,bg=bk2

λg · rl,k2 .

We are still left to account for the revenue accrued from customers g ∈ G such that i≤ σ−1(1)< l with budget

bg ≥ bk2 . Since product l is now priced at level k2, we compute this revenue inductively from Vi,l−1(k2, k2). On

the other hand, the maximum expected revenue from customers with l < σ−1g (1)≤ j can be found inductively

from Vl+1,j(k1, k2). Therefore, the overall maximum expected revenue is∑
g∈G:σg(l)=1,bg=bk2

λg · rl,k2 +Vi,l−1(k2, k2) +Vl+1,j(k1, k2).

Taking the maximum over these two possibilities proves the claim. �

