{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Part 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The file \"Purchase_Data.csv\" contains purchase data at a Chinese supermarket for various products. Read this csv into a dataframe called df_data and use the head() method to check that you have read in the data correctly. Make sure you import pandas."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" invoice_number | \n",
" invoice_time | \n",
" store_id | \n",
" product_id | \n",
" category_id | \n",
" num_item | \n",
" price | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2.020000e+11 | \n",
" 7/15/15 10:45 | \n",
" G816 | \n",
" 7000300 | \n",
" 210101 | \n",
" 1.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070891 | \n",
" 70401 | \n",
" 1.0 | \n",
" 6.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7090363 | \n",
" 70401 | \n",
" 1.0 | \n",
" 6.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" invoice_number invoice_time store_id product_id category_id num_item \\\n",
"0 2.020000e+11 7/15/15 10:45 G816 7000300 210101 1.0 \n",
"1 2.020000e+11 7/15/15 12:16 G816 7070884 70203 1.0 \n",
"2 2.020000e+11 7/15/15 12:16 G816 7070884 70203 1.0 \n",
"3 2.020000e+11 7/15/15 12:16 G816 7070891 70401 1.0 \n",
"4 2.020000e+11 7/15/15 12:16 G816 7090363 70401 1.0 \n",
"\n",
" price \n",
"0 2.0 \n",
"1 2.0 \n",
"2 2.0 \n",
"3 6.0 \n",
"4 6.0 "
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"#Write your code here\n",
"df_data = pd.read_csv(\"Pandas_Data_Practice/Test/Purchase_Data.csv\")\n",
"df_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use the dtypes attribute to view how each column is stored"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"invoice_number float64\n",
"invoice_time object\n",
"store_id object\n",
"product_id int64\n",
"category_id int64\n",
"num_item float64\n",
"price float64\n",
"dtype: object"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_data.dtypes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Slice the first two columns using .loc and store the result in a variable called result_1."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" invoice_number | \n",
" invoice_time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2.020000e+11 | \n",
" 7/15/15 10:45 | \n",
"
\n",
" \n",
" 1 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
"
\n",
" \n",
" 2 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
"
\n",
" \n",
" 3 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
"
\n",
" \n",
" 4 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" invoice_number invoice_time\n",
"0 2.020000e+11 7/15/15 10:45\n",
"1 2.020000e+11 7/15/15 12:16\n",
"2 2.020000e+11 7/15/15 12:16\n",
"3 2.020000e+11 7/15/15 12:16\n",
"4 2.020000e+11 7/15/15 12:16"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write you code here\n",
"result_1 = df_data.loc[:,\"invoice_number\":\\\n",
" \"invoice_time\"]\n",
"result_1.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Slice the first two rows using .loc and store the result in a variable called result_2."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" invoice_number | \n",
" invoice_time | \n",
" store_id | \n",
" product_id | \n",
" category_id | \n",
" num_item | \n",
" price | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2.020000e+11 | \n",
" 7/15/15 10:45 | \n",
" G816 | \n",
" 7000300 | \n",
" 210101 | \n",
" 1.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" invoice_number invoice_time store_id product_id category_id num_item \\\n",
"0 2.020000e+11 7/15/15 10:45 G816 7000300 210101 1.0 \n",
"1 2.020000e+11 7/15/15 12:16 G816 7070884 70203 1.0 \n",
"\n",
" price \n",
"0 2.0 \n",
"1 2.0 "
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write you code here\n",
"result_2 = df_data.loc[0:1, :]\n",
"result_2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Slice the first four rows and the first five columns and store the result in a variable called result_3."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" invoice_number | \n",
" invoice_time | \n",
" store_id | \n",
" product_id | \n",
" category_id | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2.020000e+11 | \n",
" 7/15/15 10:45 | \n",
" G816 | \n",
" 7000300 | \n",
" 210101 | \n",
"
\n",
" \n",
" 1 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
"
\n",
" \n",
" 2 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
"
\n",
" \n",
" 3 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070891 | \n",
" 70401 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" invoice_number invoice_time store_id product_id category_id\n",
"0 2.020000e+11 7/15/15 10:45 G816 7000300 210101\n",
"1 2.020000e+11 7/15/15 12:16 G816 7070884 70203\n",
"2 2.020000e+11 7/15/15 12:16 G816 7070884 70203\n",
"3 2.020000e+11 7/15/15 12:16 G816 7070891 70401"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"result_3 = df_data.loc[0:3, \"invoice_number\":\\\n",
" \"category_id\"]\n",
"result_3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Slice rows 0,4,6 and columns invoice time and price and store the result in variable called result_4."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" invoice_time | \n",
" price | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 7/15/15 10:45 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 7/15/15 12:16 | \n",
" 6.0 | \n",
"
\n",
" \n",
" 6 | \n",
" 7/15/15 15:28 | \n",
" 2.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" invoice_time price\n",
"0 7/15/15 10:45 2.0\n",
"4 7/15/15 12:16 6.0\n",
"6 7/15/15 15:28 2.0"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"result_4 = df_data.loc[[0,4,6], [\"invoice_time\",\\\n",
" \"price\"]]\n",
"result_4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Store the number rows in a variable called num_rows."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"5382"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dim = df_data.shape\n",
"num_rows = dim[0]\n",
"num_rows"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Print out the last row of the data to dataframe. **Hint:** use the variable num_rows from the previous exercise."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"2.0"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"last_row = df_data.loc[num_rows-1,:]\n",
"last_row[\"price\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Part 2"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" invoice_number | \n",
" invoice_time | \n",
" store_id | \n",
" product_id | \n",
" category_id | \n",
" num_item | \n",
" price | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2.020000e+11 | \n",
" 7/15/15 10:45 | \n",
" G816 | \n",
" 7000300 | \n",
" 210101 | \n",
" 1.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070891 | \n",
" 70401 | \n",
" 1.0 | \n",
" 6.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7090363 | \n",
" 70401 | \n",
" 1.0 | \n",
" 6.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" invoice_number invoice_time store_id product_id category_id num_item \\\n",
"0 2.020000e+11 7/15/15 10:45 G816 7000300 210101 1.0 \n",
"1 2.020000e+11 7/15/15 12:16 G816 7070884 70203 1.0 \n",
"2 2.020000e+11 7/15/15 12:16 G816 7070884 70203 1.0 \n",
"3 2.020000e+11 7/15/15 12:16 G816 7070891 70401 1.0 \n",
"4 2.020000e+11 7/15/15 12:16 G816 7090363 70401 1.0 \n",
"\n",
" price \n",
"0 2.0 \n",
"1 2.0 \n",
"2 2.0 \n",
"3 6.0 \n",
"4 6.0 "
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compute the average and max price charged. Store the results in variables called avg_price and max_price"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(3.1920522110741354, 6.01)"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"avg_price = df_data.price.mean()\n",
"max_price = df_data.price.max()\n",
"avg_price,max_price"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compute the average price and average number of items purchased with only a single call to the mean() method. Store these averages in avg_price and avg_num_items."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(3.1920522110741354, 1.2983091787439613)"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write you code here\n",
"avgs = df_data[[\"price\", \"num_item\"]].mean()\n",
"avg_price = avgs[\"price\"]\n",
"avg_num_items = avgs[\"num_item\"]\n",
"\n",
"avg_price, avg_num_items"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a column called \"total\", which is the product of the price and num_item columns."
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" invoice_number | \n",
" invoice_time | \n",
" store_id | \n",
" product_id | \n",
" category_id | \n",
" num_item | \n",
" price | \n",
" total | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2.020000e+11 | \n",
" 7/15/15 10:45 | \n",
" G816 | \n",
" 7000300 | \n",
" 210101 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070891 | \n",
" 70401 | \n",
" 1.0 | \n",
" 6.0 | \n",
" 6.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7090363 | \n",
" 70401 | \n",
" 1.0 | \n",
" 6.0 | \n",
" 6.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" invoice_number invoice_time store_id product_id category_id num_item \\\n",
"0 2.020000e+11 7/15/15 10:45 G816 7000300 210101 1.0 \n",
"1 2.020000e+11 7/15/15 12:16 G816 7070884 70203 1.0 \n",
"2 2.020000e+11 7/15/15 12:16 G816 7070884 70203 1.0 \n",
"3 2.020000e+11 7/15/15 12:16 G816 7070891 70401 1.0 \n",
"4 2.020000e+11 7/15/15 12:16 G816 7090363 70401 1.0 \n",
"\n",
" price total \n",
"0 2.0 2.0 \n",
"1 2.0 2.0 \n",
"2 2.0 2.0 \n",
"3 6.0 6.0 \n",
"4 6.0 6.0 "
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_data[\"total\"] = df_data.price*df_data.num_item\n",
"\n",
"df_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What is the average price of the three most expensive purchases? "
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"164.0"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_data_sorted = df_data.sort_values(\\\n",
" by = \"total\",\\\n",
" inplace = False,\n",
" ascending = False)\n",
"\n",
"top_three = df_data_sorted.loc[\\\n",
" [4510, 3784, 4288],\"total\"]\n",
"top_three_mean = top_three.mean()\n",
"top_three_mean"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"How many different products are there?"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"53"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"list_prods = df_data.product_id.unique()\n",
"num_prods = len(list_prods)\n",
"num_prods"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Find the difference between the mean and median of the column total. Use the describe() method and then index the dataframe it returns."
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"0.9318078781127945"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_summary = df_data.describe()\n",
"avg_total = df_summary.loc[\"mean\", \"total\"]\n",
"median_total = df_summary.loc[\"50%\", \"total\"]\n",
"diff = avg_total - median_total\n",
"diff"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use the drop() method to delete the column total from the dataframe df_data."
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" invoice_number | \n",
" invoice_time | \n",
" store_id | \n",
" product_id | \n",
" category_id | \n",
" num_item | \n",
" price | \n",
" total | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2.020000e+11 | \n",
" 7/15/15 10:45 | \n",
" G816 | \n",
" 7000300 | \n",
" 210101 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7070891 | \n",
" 70401 | \n",
" 1.0 | \n",
" 6.0 | \n",
" 6.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 2.020000e+11 | \n",
" 7/15/15 12:16 | \n",
" G816 | \n",
" 7090363 | \n",
" 70401 | \n",
" 1.0 | \n",
" 6.0 | \n",
" 6.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" invoice_number invoice_time store_id product_id category_id num_item \\\n",
"0 2.020000e+11 7/15/15 10:45 G816 7000300 210101 1.0 \n",
"1 2.020000e+11 7/15/15 12:16 G816 7070884 70203 1.0 \n",
"2 2.020000e+11 7/15/15 12:16 G816 7070884 70203 1.0 \n",
"3 2.020000e+11 7/15/15 12:16 G816 7070891 70401 1.0 \n",
"4 2.020000e+11 7/15/15 12:16 G816 7090363 70401 1.0 \n",
"\n",
" price total \n",
"0 2.0 2.0 \n",
"1 2.0 2.0 \n",
"2 2.0 2.0 \n",
"3 6.0 6.0 \n",
"4 6.0 6.0 "
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_data_no_total = df_data.\\\n",
" drop(\"total\", axis = 1,inplace = False)\n",
"df_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's dig a little deeper into the data set and answer some basic question."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"invoice_number float64\n",
"invoice_time object\n",
"store_id object\n",
"product_id int64\n",
"category_id int64\n",
"num_item float64\n",
"price float64\n",
"total float64\n",
"dtype: object"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_data.dtypes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, covert the column invoice time to a datetime column. Print out the new column types to make sure this was done correctly"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"invoice_number float64\n",
"invoice_time datetime64[ns]\n",
"store_id object\n",
"product_id int64\n",
"category_id int64\n",
"num_item float64\n",
"price float64\n",
"dtype: object"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_data = pd.read_csv(\\\n",
" \"Pandas_Data_Practice/Test/Purchase_Data.csv\",\\\n",
" parse_dates = [\"invoice_time\"])\n",
"df_data.dtypes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, let's create columns called \"DOW\" and \"Month\", which store the corresponding weekday and month of the invoice respectively. Print the head of the dataframe to make sure this was done correctly."
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" invoice_number | \n",
" invoice_time | \n",
" store_id | \n",
" product_id | \n",
" category_id | \n",
" num_item | \n",
" price | \n",
" month | \n",
" DOW | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2.020000e+11 | \n",
" 2015-07-15 10:45:00 | \n",
" G816 | \n",
" 7000300 | \n",
" 210101 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 7 | \n",
" Wednesday | \n",
"
\n",
" \n",
" 1 | \n",
" 2.020000e+11 | \n",
" 2015-07-15 12:16:00 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 7 | \n",
" Wednesday | \n",
"
\n",
" \n",
" 2 | \n",
" 2.020000e+11 | \n",
" 2015-07-15 12:16:00 | \n",
" G816 | \n",
" 7070884 | \n",
" 70203 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 7 | \n",
" Wednesday | \n",
"
\n",
" \n",
" 3 | \n",
" 2.020000e+11 | \n",
" 2015-07-15 12:16:00 | \n",
" G816 | \n",
" 7070891 | \n",
" 70401 | \n",
" 1.0 | \n",
" 6.0 | \n",
" 7 | \n",
" Wednesday | \n",
"
\n",
" \n",
" 4 | \n",
" 2.020000e+11 | \n",
" 2015-07-15 12:16:00 | \n",
" G816 | \n",
" 7090363 | \n",
" 70401 | \n",
" 1.0 | \n",
" 6.0 | \n",
" 7 | \n",
" Wednesday | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" invoice_number invoice_time store_id product_id category_id \\\n",
"0 2.020000e+11 2015-07-15 10:45:00 G816 7000300 210101 \n",
"1 2.020000e+11 2015-07-15 12:16:00 G816 7070884 70203 \n",
"2 2.020000e+11 2015-07-15 12:16:00 G816 7070884 70203 \n",
"3 2.020000e+11 2015-07-15 12:16:00 G816 7070891 70401 \n",
"4 2.020000e+11 2015-07-15 12:16:00 G816 7090363 70401 \n",
"\n",
" num_item price month DOW \n",
"0 1.0 2.0 7 Wednesday \n",
"1 1.0 2.0 7 Wednesday \n",
"2 1.0 2.0 7 Wednesday \n",
"3 1.0 6.0 7 Wednesday \n",
"4 1.0 6.0 7 Wednesday "
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_data[\"month\"] = df_data.invoice_time.dt.month\n",
"df_data[\"DOW\"] = df_data.invoice_time.dt.\\\n",
" weekday_name\n",
"df_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a variable called num_purchases_wed, which stores the number of purchases made on Wednesday? You should use value_counts and then index the series it return."
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"959"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"counts_dow = df_data.DOW.value_counts()\n",
"num_purchases_wed = counts_dow[\"Wednesday\"]\n",
"num_purchases_wed"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Part 3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this set of practice exercises, we will be working with a demographic data regarding the passengers aboard the Titanic. Read in the data frame and use the head() method to check that it was read in correctly."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PassengerId | \n",
" Pclass | \n",
" Name | \n",
" Sex | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Ticket | \n",
" Fare | \n",
" Cabin | \n",
" Embarked | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 892 | \n",
" 3 | \n",
" Kelly, Mr. James | \n",
" male | \n",
" 34.5 | \n",
" 0 | \n",
" 0 | \n",
" 330911 | \n",
" 7.8292 | \n",
" NaN | \n",
" Q | \n",
"
\n",
" \n",
" 1 | \n",
" 893 | \n",
" 3 | \n",
" Wilkes, Mrs. James (Ellen Needs) | \n",
" female | \n",
" 47.0 | \n",
" 1 | \n",
" 0 | \n",
" 363272 | \n",
" 7.0000 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 2 | \n",
" 894 | \n",
" 2 | \n",
" Myles, Mr. Thomas Francis | \n",
" male | \n",
" 62.0 | \n",
" 0 | \n",
" 0 | \n",
" 240276 | \n",
" 9.6875 | \n",
" NaN | \n",
" Q | \n",
"
\n",
" \n",
" 3 | \n",
" 895 | \n",
" 3 | \n",
" Wirz, Mr. Albert | \n",
" male | \n",
" 27.0 | \n",
" 0 | \n",
" 0 | \n",
" 315154 | \n",
" 8.6625 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 4 | \n",
" 896 | \n",
" 3 | \n",
" Hirvonen, Mrs. Alexander (Helga E Lindqvist) | \n",
" female | \n",
" 22.0 | \n",
" 1 | \n",
" 1 | \n",
" 3101298 | \n",
" 12.2875 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PassengerId Pclass Name Sex \\\n",
"0 892 3 Kelly, Mr. James male \n",
"1 893 3 Wilkes, Mrs. James (Ellen Needs) female \n",
"2 894 2 Myles, Mr. Thomas Francis male \n",
"3 895 3 Wirz, Mr. Albert male \n",
"4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female \n",
"\n",
" Age SibSp Parch Ticket Fare Cabin Embarked \n",
"0 34.5 0 0 330911 7.8292 NaN Q \n",
"1 47.0 1 0 363272 7.0000 NaN S \n",
"2 62.0 0 0 240276 9.6875 NaN Q \n",
"3 27.0 0 0 315154 8.6625 NaN S \n",
"4 22.0 1 1 3101298 12.2875 NaN S "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"#Write your code here\n",
"df_titanic = pd.read_csv(\"Pandas_Data_Practice/Titanic.csv\")\n",
"df_titanic.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use the rename method to change the column \"Name\" to \"Passenger_Name\" and the column \"Ticket\" to \"Ticket_Num\"."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PassengerId | \n",
" Pclass | \n",
" Passenger_Name | \n",
" Sex | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Ticket_Num | \n",
" Fare | \n",
" Cabin | \n",
" Embarked | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 892 | \n",
" 3 | \n",
" Kelly, Mr. James | \n",
" male | \n",
" 34.5 | \n",
" 0 | \n",
" 0 | \n",
" 330911 | \n",
" 7.8292 | \n",
" NaN | \n",
" Q | \n",
"
\n",
" \n",
" 1 | \n",
" 893 | \n",
" 3 | \n",
" Wilkes, Mrs. James (Ellen Needs) | \n",
" female | \n",
" 47.0 | \n",
" 1 | \n",
" 0 | \n",
" 363272 | \n",
" 7.0000 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 2 | \n",
" 894 | \n",
" 2 | \n",
" Myles, Mr. Thomas Francis | \n",
" male | \n",
" 62.0 | \n",
" 0 | \n",
" 0 | \n",
" 240276 | \n",
" 9.6875 | \n",
" NaN | \n",
" Q | \n",
"
\n",
" \n",
" 3 | \n",
" 895 | \n",
" 3 | \n",
" Wirz, Mr. Albert | \n",
" male | \n",
" 27.0 | \n",
" 0 | \n",
" 0 | \n",
" 315154 | \n",
" 8.6625 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 4 | \n",
" 896 | \n",
" 3 | \n",
" Hirvonen, Mrs. Alexander (Helga E Lindqvist) | \n",
" female | \n",
" 22.0 | \n",
" 1 | \n",
" 1 | \n",
" 3101298 | \n",
" 12.2875 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PassengerId Pclass Passenger_Name Sex \\\n",
"0 892 3 Kelly, Mr. James male \n",
"1 893 3 Wilkes, Mrs. James (Ellen Needs) female \n",
"2 894 2 Myles, Mr. Thomas Francis male \n",
"3 895 3 Wirz, Mr. Albert male \n",
"4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female \n",
"\n",
" Age SibSp Parch Ticket_Num Fare Cabin Embarked \n",
"0 34.5 0 0 330911 7.8292 NaN Q \n",
"1 47.0 1 0 363272 7.0000 NaN S \n",
"2 62.0 0 0 240276 9.6875 NaN Q \n",
"3 27.0 0 0 315154 8.6625 NaN S \n",
"4 22.0 1 1 3101298 12.2875 NaN S "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_titanic.rename(columns={\"Name\":\"Passenger_Name\",\n",
" \"Ticket\":\"Ticket_Num\"},\\\n",
" inplace = True)\n",
"df_titanic.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Change the index of the df_titanic to the column PasengerID."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Pclass | \n",
" Passenger_Name | \n",
" Sex | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Ticket_Num | \n",
" Fare | \n",
" Cabin | \n",
" Embarked | \n",
"
\n",
" \n",
" PassengerId | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 892 | \n",
" 3 | \n",
" Kelly, Mr. James | \n",
" male | \n",
" 34.5 | \n",
" 0 | \n",
" 0 | \n",
" 330911 | \n",
" 7.8292 | \n",
" NaN | \n",
" Q | \n",
"
\n",
" \n",
" 893 | \n",
" 3 | \n",
" Wilkes, Mrs. James (Ellen Needs) | \n",
" female | \n",
" 47.0 | \n",
" 1 | \n",
" 0 | \n",
" 363272 | \n",
" 7.0000 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 894 | \n",
" 2 | \n",
" Myles, Mr. Thomas Francis | \n",
" male | \n",
" 62.0 | \n",
" 0 | \n",
" 0 | \n",
" 240276 | \n",
" 9.6875 | \n",
" NaN | \n",
" Q | \n",
"
\n",
" \n",
" 895 | \n",
" 3 | \n",
" Wirz, Mr. Albert | \n",
" male | \n",
" 27.0 | \n",
" 0 | \n",
" 0 | \n",
" 315154 | \n",
" 8.6625 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 896 | \n",
" 3 | \n",
" Hirvonen, Mrs. Alexander (Helga E Lindqvist) | \n",
" female | \n",
" 22.0 | \n",
" 1 | \n",
" 1 | \n",
" 3101298 | \n",
" 12.2875 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Pclass Passenger_Name Sex \\\n",
"PassengerId \n",
"892 3 Kelly, Mr. James male \n",
"893 3 Wilkes, Mrs. James (Ellen Needs) female \n",
"894 2 Myles, Mr. Thomas Francis male \n",
"895 3 Wirz, Mr. Albert male \n",
"896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female \n",
"\n",
" Age SibSp Parch Ticket_Num Fare Cabin Embarked \n",
"PassengerId \n",
"892 34.5 0 0 330911 7.8292 NaN Q \n",
"893 47.0 1 0 363272 7.0000 NaN S \n",
"894 62.0 0 0 240276 9.6875 NaN Q \n",
"895 27.0 0 0 315154 8.6625 NaN S \n",
"896 22.0 1 1 3101298 12.2875 NaN S "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_titanic.set_index(\"PassengerId\", inplace = True)\n",
"df_titanic.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Select the name of passenger 896"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"'Hirvonen, Mrs. Alexander (Helga E Lindqvist)'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_titanic.loc[896, \"Passenger_Name\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Change the index back to row numbers but making sure that we don't lose the PassengerId column. "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PassengerId | \n",
" Pclass | \n",
" Passenger_Name | \n",
" Sex | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Ticket_Num | \n",
" Fare | \n",
" Cabin | \n",
" Embarked | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 892 | \n",
" 3 | \n",
" Kelly, Mr. James | \n",
" male | \n",
" 34.5 | \n",
" 0 | \n",
" 0 | \n",
" 330911 | \n",
" 7.8292 | \n",
" NaN | \n",
" Q | \n",
"
\n",
" \n",
" 1 | \n",
" 893 | \n",
" 3 | \n",
" Wilkes, Mrs. James (Ellen Needs) | \n",
" female | \n",
" 47.0 | \n",
" 1 | \n",
" 0 | \n",
" 363272 | \n",
" 7.0000 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 2 | \n",
" 894 | \n",
" 2 | \n",
" Myles, Mr. Thomas Francis | \n",
" male | \n",
" 62.0 | \n",
" 0 | \n",
" 0 | \n",
" 240276 | \n",
" 9.6875 | \n",
" NaN | \n",
" Q | \n",
"
\n",
" \n",
" 3 | \n",
" 895 | \n",
" 3 | \n",
" Wirz, Mr. Albert | \n",
" male | \n",
" 27.0 | \n",
" 0 | \n",
" 0 | \n",
" 315154 | \n",
" 8.6625 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 4 | \n",
" 896 | \n",
" 3 | \n",
" Hirvonen, Mrs. Alexander (Helga E Lindqvist) | \n",
" female | \n",
" 22.0 | \n",
" 1 | \n",
" 1 | \n",
" 3101298 | \n",
" 12.2875 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PassengerId Pclass Passenger_Name Sex \\\n",
"0 892 3 Kelly, Mr. James male \n",
"1 893 3 Wilkes, Mrs. James (Ellen Needs) female \n",
"2 894 2 Myles, Mr. Thomas Francis male \n",
"3 895 3 Wirz, Mr. Albert male \n",
"4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female \n",
"\n",
" Age SibSp Parch Ticket_Num Fare Cabin Embarked \n",
"0 34.5 0 0 330911 7.8292 NaN Q \n",
"1 47.0 1 0 363272 7.0000 NaN S \n",
"2 62.0 0 0 240276 9.6875 NaN Q \n",
"3 27.0 0 0 315154 8.6625 NaN S \n",
"4 22.0 1 1 3101298 12.2875 NaN S "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_titanic.reset_index(drop = False, inplace = True)\n",
"df_titanic.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"How many missing entries are there in the Age column? Use the isnull() method and recall than Booleans are exactly like 1s (True) and 0s (False)."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"86"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write you code here\n",
"df_titanic.isnull().sum()[\"Age\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compute the avg age of passengers ignoring the missing data."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"30.272590361445783"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"mean_age = df_titanic.Age.mean()\n",
"mean_age"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using the fillna() method replace the missing values in the Age column with the mean."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PassengerId | \n",
" Pclass | \n",
" Passenger_Name | \n",
" Sex | \n",
" Age | \n",
" SibSp | \n",
" Parch | \n",
" Ticket_Num | \n",
" Fare | \n",
" Cabin | \n",
" Embarked | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 892 | \n",
" 3 | \n",
" Kelly, Mr. James | \n",
" male | \n",
" 34.5 | \n",
" 0 | \n",
" 0 | \n",
" 330911 | \n",
" 7.8292 | \n",
" NaN | \n",
" Q | \n",
"
\n",
" \n",
" 1 | \n",
" 893 | \n",
" 3 | \n",
" Wilkes, Mrs. James (Ellen Needs) | \n",
" female | \n",
" 47.0 | \n",
" 1 | \n",
" 0 | \n",
" 363272 | \n",
" 7.0000 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 2 | \n",
" 894 | \n",
" 2 | \n",
" Myles, Mr. Thomas Francis | \n",
" male | \n",
" 62.0 | \n",
" 0 | \n",
" 0 | \n",
" 240276 | \n",
" 9.6875 | \n",
" NaN | \n",
" Q | \n",
"
\n",
" \n",
" 3 | \n",
" 895 | \n",
" 3 | \n",
" Wirz, Mr. Albert | \n",
" male | \n",
" 27.0 | \n",
" 0 | \n",
" 0 | \n",
" 315154 | \n",
" 8.6625 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
" 4 | \n",
" 896 | \n",
" 3 | \n",
" Hirvonen, Mrs. Alexander (Helga E Lindqvist) | \n",
" female | \n",
" 22.0 | \n",
" 1 | \n",
" 1 | \n",
" 3101298 | \n",
" 12.2875 | \n",
" NaN | \n",
" S | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PassengerId Pclass Passenger_Name Sex \\\n",
"0 892 3 Kelly, Mr. James male \n",
"1 893 3 Wilkes, Mrs. James (Ellen Needs) female \n",
"2 894 2 Myles, Mr. Thomas Francis male \n",
"3 895 3 Wirz, Mr. Albert male \n",
"4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female \n",
"\n",
" Age SibSp Parch Ticket_Num Fare Cabin Embarked \n",
"0 34.5 0 0 330911 7.8292 NaN Q \n",
"1 47.0 1 0 363272 7.0000 NaN S \n",
"2 62.0 0 0 240276 9.6875 NaN Q \n",
"3 27.0 0 0 315154 8.6625 NaN S \n",
"4 22.0 1 1 3101298 12.2875 NaN S "
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_titanic.fillna({\"Age\":mean_age}, inplace = True)\n",
"df_titanic.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What is the average age of the 5 oldest passengers? The reset_index method will be helpful here."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"67.0"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Write your code here\n",
"df_titanic_sorted = df_titanic.sort_values(by = \"Age\",\\\n",
" inplace = False,\\\n",
" ascending = False)\n",
"\n",
"final_df = df_titanic_sorted.reset_index(inplace = False,\\\n",
" drop = True)\n",
"\n",
"final_df.loc[0:4, \"Age\"].mean()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
},
"toc": {
"nav_menu": {
"height": "48px",
"width": "252px"
},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"toc_cell": false,
"toc_position": {},
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}