
Assortment Optimization under the Multinomial Logit Model with
Utility-Based Rank Cutoffs

Yicheng Bai1, Jacob Feldman2, Huseyin Topaloglu1, Laura Wagner3
1School of Operations Research and Information Engineering, Cornell Tech, New York, NY 10044, USA

2 Olin Business School, University of Washington, St Louis, MO 63130, USA
3 Catolica-Lisbon School of Business and Economics, Palma de Cima, 1649-023 Lisboa, Portugal

yb279@cornell.edu, jbfeldman@wustl.edu, topaloglu@orie.cornell.edu, lwagner@ucp.pt

We study assortment optimization problems under a natural variant of the multinomial logit model where

the customers are willing to focus only on a certain number of products that provide the largest utilities. In

particular, each customer has a rank cutoff, characterizing the number of products that she will focus on

during the course of her choice process. Given that we offer a certain assortment of products, the choice

process of a customer with rank cutoff k proceeds as follows. The customer associates random utilities with

all of the products as well as the no-purchase option. She ignores all alternatives whose utilities are not within

the k largest utilities. Among the remaining alternatives, the customer chooses the available alternative

that provides the largest utility. Under the assumption that the utilities follow Gumbel distributions with

the same scale parameter, we provide a recursion to compute the choice probabilities. Considering the

assortment optimization problem to find the revenue-maximizing assortment of products to offer, we show

that the problem is NP-hard and give a polynomial-time approximation scheme. Since the customers ignore

the products below their rank cutoffs in our variant of the multinomial logit model, intuitively speaking,

our variant captures choosier choice behavior than the standard multinomial logit model. Accordingly, we

show that the revenue-maximizing assortment under our variant includes the revenue-maximizing assortment

under the standard multinomial logit model, so choosier behavior leads to larger assortments offered to

maximize the expected revenue. We conduct computational experiments on both synthetic and real datasets

to demonstrate that incorporating rank cutoffs can yield better predictions of customer choices and yield

more profitable assortment recommendations. Dated August 31, 2023.

1. Introduction

Using choice models to capture customer choice behavior has steadily become the common practice

in revenue management. Discrete choice models allow us to capture the fact that customers

substitute among the offered products, so if a particular product is not offered, then a portion of the

customers interested in this product will substitute into a suitable available alternative, whereas

another portion will leave without making a purchase. A growing body of literature indicates that

incorporating such substitution possibilities into revenue management models can yield significant

improvements in the revenues; see, for example, Talluri and van Ryzin (2004) and Vulcano et al.

(2010). When picking a choice model to work with, there is a natural tension between using more

sophisticated choice models to capture the customer choice process more accurately and using

simpler choice models to make operational decisions more efficiently. One class of choice models

that is often used in practice is based on random utility maximization, where a customer associates

random utilities with each alternative and chooses the one that provides the largest utility. A
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common assumption in such choice models is that the customer can potentially choose any of the

available alternatives. One way of enriching the choice models that are based on random utility

maximization is to incorporate a probabilistic structure that describes a subset of alternatives that

the customer is willing to focus on. The customer chooses the available alternative with the largest

utility among the alternatives that she is willing to focus on. The probabilistic structure guiding

the subset of alternatives that the customer is willing to focus on, along with the distribution of

the utilities, specify the choice process of the customers.

We consider a natural variant of the multinomial logit model that uses utility rank cutoffs to

describe the subset of alternatives that the customer is willing to focus on. In our variant, each

customer has a rank cutoff, characterizing the number of products that she is willing to focus

on. Given that we offer a certain assortment of products, a customer with rank cutoff k makes a

choice within the assortment as follows. The customer associates random utilities with all products,

including those not offered, as well as the no-purchase option. The utilities are independent of

each other and have a Gumbel distribution with the same scale parameter, as is the case for the

standard multinomial logit model. The customer ignores all alternatives whose utilities are not

within the largest k. Among the remaining ones, she chooses the available alternative that provides

the largest utility. If none of the alternatives that provide the largest k utilities are available in the

offered assortment or the available alternative that provides the largest utility is the no-purchase

option, then the customer leaves without a purchase. Such purchasing behavior is common when,

for example, shopping for groceries, where a customer leaves without a purchase when she cannot

find one of her top two or three cereal varieties on the shelf. Thus, the utilities determine the ranking

of the products, whereas the rank cutoff determines minimum acceptable utility. We overview our

technical contributions, followed by a detailed discussion to motivate our choice model.

Technical Contributions: We make contributions in formulating the choice model, solving the

corresponding assortment optimization problem and providing comparative statistics.

Choice Probabilities for the Multinomial Logit Model with Rank Cutoffs. Under the assumption

that the rank cutoff of a customer follows a general discrete distribution, we give a recursion to

compute the choice probability of each product within an assortment (Theorem 3.1). The choice

probability of a product under the standard multinomial logit model takes the form of a fraction

where the numerator involves the mean utility of the product and the denominator involves the

mean utilities of all available alternatives. The choice probability of a product under our choice

model involves sums of products of fractions. Thus, the choice probabilities under the two choice

models are drastically different. Our variant provides a natural approach for incorporating choosy

customers into the multinomial logit model. In a general method to incorporate choosy customers,
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each customer has a, possibly random, set of products C to focus on. If we offer the assortment S

of products, then a customer ignores all the products that are not in the set C, focusing only on the

products in the assortment S∩C and choosing within this assortment according to the multinomial

logit model. In practice, specifying a probabilistic structure on the collection of all possible sets

to focus on and estimating the parameters of this probabilistic structure may be difficult. In our

approach, the rank cutoff is a scalar random variable and it allows us to succinctly characterize

the set of products that a customer is willing to focus on.

Assortment Optimization and Impact of Rank Cutoffs. We study the problem of finding the

revenue-maximizing assortment of products to offer under our choice model. We show that this

assortment optimization problem is NP-hard (Theorem 4.1). Before giving an approximation

scheme for the problem, we compare the optimal assortment under our choice model with two

edge cases. First, if all customers have a rank cutoff of infinity, then they do not ignore any

product during the course of their choice process, so our variant becomes equivalent to the standard

multinomial logit model. Second, if all customers have a rank cutoff of one, then they purchase

only their most favorite product, if available, so our variant becomes equivalent to the independent

demand model. Intuitively speaking, the customers become choosier as their rank cutoffs decrease,

so the customers under our choice model are choosier than those under the standard multinomial

logit model but less choosy than those under the independent demand model. Accordingly, we

show that the revenue-maximizing assortment under our choice model includes the one under the

standard multinomial logit model, but is included by the one under the independent demand model

(Theorem 4.2). Thus, as the customers get choosier, we offer a larger assortment to maximize

the expected revenue. We can show this result even though computing the revenue-maximizing

assortment under our choice model is NP-hard. The proof uses a property of independent Gumbel

random variables stating that given the top p alternatives, the conditional choice process of the

customer among the remaining q alternatives is identical to the unconditional one.

Approximation Scheme. We provide a polynomial-time approximation scheme (PTAS) for the

assortment optimization problem. Letting n be the number of available products and RevOps be

the number of operations to compute the expected revenue from any assortment, for any ε∈ (0,1),

our PTAS finds a (1−ε)-approximate solution in O((n/ε)
O(1/ε2)

RevOps) operations (Theorem 5.1).

In the multinomial logit model, each product has a preference weight that is a function of its mean

utility. We refer to the product of the revenue and preference weight of a product as its weight.

In our approach, we group the products into product classes so that the weights of the products

in each class differ at most by a factor of 1 + ε. Our PTAS uses two results. First, we show that

there exists, what we call, an ideal assortment that offers products in at most O( log(n/ε)

ε
) product
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classes and provides a (1− ε)2-approximate solution. This ideal assortment is light in the sense

that it offers a certain number of products with the smallest preference weights in each product

class (Proposition 6.1). Second, guessing the total weight of the products offered by the ideal

assortment in each product class, we construct a collection of O((n/ε)
O(1/ε2)

) light assortments that

is guaranteed to include the ideal assortment (Proposition 6.2). Letting m be the maximum rank

cutoff, the number of operations to compute the expected revenue from an assortment, RevOps,

increases exponentially with m, but polynomially with n. Thus, our approach is a PTAS when

the maximum rank cutoff is O(1). The running time of O((n/ε)
O(1/ε2)

RevOps) depends on m only

through RevOps. Using θ to measure the relative gap between the largest and smallest preference

weights in our choice model, we also show that if we use simulation with O( θ n
2

ε4
log(n/ε)) samples

to estimate the expected revenue of an assortment, then our PTAS yields a (1− ε)-approximate

solution with 1− ε probability, eliminating the dependence of the running time on m.

Prediction Ability with Rank Cutoffs. We test the ability of our multinomial logit model with

rank cutoffs to predict customer choices and to identify profitable assortments. We use randomly

generated synthetic datasets, along with a dataset based on the preferences of diners among sushi

varieties. As benchmarks, we use the standard multinomial logit model and mixture of multinomial

logit models, as well as the attention and consideration model and its mixture; see Gallego and Li

(2017). Our choice model consistently performs better than the standard multinomial logit model,

as well as the attention and consideration model. Our choice model is competitive to the mixture

benchmarks, providing consistent improvements especially when the training dataset is small to

moderate. We also numerically test the practical performance of our PTAS.

Motivating and Interpreting Our Choice Model from Multiple Angles: We can easily

describe our choice model as a modification of the standard multinomial logit model using rank

cutoffs, but there are lots of other ways to motive our choice model and connect it to the literature.

A Preference List-Based Choice Model. Our choice model can be cast as a preference list-based

choice model. Under the preference list-based choice model, each customer arrives with a random

preference list of the products and no-purchase option in mind, ranking all alternatives. The

customer chooses the available alternative with the highest rank in her preference list; see

Jagabathula et al. (2020) and Aouad et al. (2020). The distribution of the random preference

lists of the customers specifies the choice probabilities. The class of preference list-based models is

rather general in the sense that it encapsulates any choice model that is based on random utility

maximization. After introducing our choice model, we show that our choice model is a preference

list-based choice model, where the distribution of the preference lists are jointly determined through

the distribution of the utilities and rank cutoffs. In other words, we can view our multinomial
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logit model with rank cutoffs as a parsimonious way of parameterizing a distribution over the

preference lists. There are three benefits that arise from such parsimonious parameterization. First,

if there are n products in consideration, then there are O(n!) possible preference lists. Estimating

a distribution over such a large number of preference lists for a general preference list-based choice

model is difficult. Our choice model has O(n) parameters. Second, we can express the mean utility

of each product in our choice model by using a small number of numerical or categorical features,

such as price, weight or color. If a new product is introduced, then we can compute the mean

utility of the product as a function of its features without having to refit our choice model. Third,

it is provably not possible to give a PTAS for assortment optimization under a general preference

list-based choice model; see Aouad et al. (2018). We can give a PTAS under our choice model.

Compatibility with Random Utility Maximization. Under the random utility maximization

principle, a customer associates random utilities with the products and no-purchase option,

choosing the available alternative with the largest utility. In our choice model, a customer may

leave without a purchase when there exists an available product that has a utility larger than

that of the no-purchase option, but this product is not within the rank cutoff of the customer.

Thus, the customer does not follow utility-maximizing behavior with respect to the utilities in

our model. However, it is known that all preference list-based choice models are compatible with

random utility maximization, so by the discussion in the previous paragraph, our choice model is

compatible with random utility maximization. Because our choice model is compatible with random

utility maximization, there exists some utility distribution for the alternatives such that the choice

probabilities under our choice model match the choice probabilities when a customer picks the

utility-maximizing alternative under this utility distribution without using any rank cutoffs.

Why Introduce Rank Cutoffs? In the standard multinomial logit model, a customer may purchase

her, for example, tenth favorite product as long as the utility of this product is larger than the utility

of the no-purchase option. The understanding is that if the tenth favorite product provides larger

utility than the no-purchase option, then there is no reason for the customer not to purchase the

product. We introduce a layer of flexibility by allowing customers to leave without a purchase

when their few top choice products are not available. Our choice model generalizes the standard

multinomial logit model, as we recover the standard multinomial logit model when the rank cutoff

is always equal to the number of products. We can also interpret different rank cutoffs as different

customer types. Due to the rank cutoffs in our choice model, there are two reasons for a customer

with rank cutoff k to leave without a purchase. First, none of her k favorite products may be

available. Second, the utility of no-purchase may exceed the utilities of all available products. To

simplify the dynamics of our model, we can easily eliminate either reason. In particular, if the
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utility of the no-purchase option is Gumbel with location parameter of negative infinity, then

no-purchase happens only because of the first reason. In this case, we obtain a multinomial logit

model that effectively does not associate a utility with the no-purchase option, but the rank

cutoff determines when a customer does not make a purchase. All of our results, including the

computational complexity of the assortment problem and PTAS, apply to this case. The flexibility

provided by our choice model pays off. In our computational experiments, our choice model can

predict customer choices significantly better than the standard multinomial logit model.

Product Landscape. In our choice model, the customers associate utilities with all products,

including those not offered. The implication is that the customers are aware of the products that

are not offered. In some settings, the customers may know the products that are not offered. Search

goods, for example, have transparent features that can be evaluated without seeing them; see

Nelson (1970). Theater tickets and airfare have transparent features such as proximity to the stage

and departure time. When shopping for such products, the customers have some understanding of

the products that are not offered. Also, there are product categories, such as those in grocery retail,

for which the universe of products is small and the customers frequently shop in these product

categories. In such cases, the customers may know the products that are not offered.

The assumption that the customers are aware of the not offered products occurs when working

with other choice models. In the Markov chain choice model, each customer carries out a random

walk over the whole universe of products until she reaches an available alternative; see Blanchet

et al. (2016). Baked into such a random walk is an implicit assumption that the customers are

familiar with every product, offered or not. Thus, the Markov chain choice model also assumes

that the customers are aware of the not offered products, yet it has been shown to fit choice data

well even when this assumption is not fully valid. A choice model built with the assumption that

the customers associate utilities with the not offered products can be robust in the sense that it

can still predict customer choices well when this assumption does not hold.

Organization: In Section 2, we review the related literature. In Section 3, we describe our

choice model, give a recursion to compute its choice probabilities and show that it is a preference

list-based choice model. In Section 4, we formulate the assortment optimization problem, show that

it is NP-hard and compare the optimal assortment under our choice model with that under the

standard multinomial logit model. In Section 5, we overview our PTAS. In Section 6, we flesh out

our PTAS by establishing the existence of an ideal light assortment and constructing a collection

of assortments that includes this ideal light assortment. In Section 7, we test the ability of our

choice model to predict customer choices. In Section 8, we conclude.
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2. Related Literature

There is growing work in assortment optimization and pricing models that explicitly incorporate

the set of alternatives that the customer are wiling to focus on. Jagabathula and Rusmevichientong

(2017) study pricing problems when customers focus only on products whose prices are below

a certain threshold. Wang and Sahin (2018) study the assortment optimization problem when

customers balance the expected utility from the purchase with the search cost when choosing

the products to focus on. Jagabathula and Vulcano (2018) work with a choice model where the

customers only focus on the last purchased product and products on promotion. Feldman and

Topaloglu (2018) study the assortment optimization problem under the multinomial logit model

with multiple customer types having nested consideration sets. Wang (2019) studies the assortment

optimization problem for a variant of the multinomial logit model, where the customers ignore

products when their mean utilities differ substantially from the largest mean utility of an available

product. Aouad et al. (2019) study the assortment optimization problem under the multinomial

logit model when a customer chooses to focus on each product with a fixed probability. Gallego

and Li (2017) and Aouad et al. (2020) use similar probabilistic structures to characterize the set

of products that the customers are willing to focus on.

Customers may limit the set of alternatives that they focus on for two reasons. First, customers

may rule out some alternatives based on a small number of desirable features so that they lessen

the burden of choice. By explicitly modeling the set of alternatives that the customers are willing

to focus on, we can come up with a choice model that better mimics the behavioral dynamics

of the customers. Second, putting a probabilistic structure to characterize the set of alternatives

that the customers are willing to focus on may enrich expressive power of a choice model already

on hand. Our approach is aligned with the second reason. By incorporating rank cutoffs into

the multinomial logit model, we enrich the expressive power of the multinomial logit model.

Similar to us, there is work on probabilistic consideration sets that postulate a probabilistic

structure on the set of alternatives that the customers are willing to focus on. Gaundry and

Dagenais (1979) introduce the dogit model as a simple modification on the multinomial logit

model to enrich its modeling flexibility. Swait and Ben-Akiva (1987) interpret the dogit model as

a probabilistic consideration set model, where the consideration set of a customer includes either a

single alternative or all available alternatives. McCarthy (1997) demonstrates that the dogit model

can improve the ability of the multinomial logit model to predict customer choices.

Another probabilistic consideration set model is the independent availability model, where a

customer chooses to focus on each product independently with a fixed consideration probability.

Swait (1984) estimates a different consideration probability for each product, so the number of
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consideration probabilities is as large as the number of products. Andrews and Srinivasan (1995)

use a more parsimonious model by parameterizing the utility of each product through its features

and postulating that a product is included in the consideration set if its utility exceeds a random

threshold sampled from the normal distribution. Bronnenberg and Vanhonacker (1996) use a similar

parameterization but sample the random thresholds from the type-I extreme value distribution.

Thus, both the dogit and independent availability models, as well as our multinomial logit model

with rank cutoffs, improve the richness the multinomial logit model by imposing a probabilistic

structure on the set of products that the customers are willing to focus on, rather than trying to

better mimic the behavior dynamics of the customers.

In contrast to probabilistic consideration sets, deterministic consideration sets try to explicitly

model the behavioral dynamics behind the consideration set formation, but they can still utilize

stochastic components. In Hauser and Wernerfelt (1990), a customer chooses to include an

additional product into her consideration set by checking whether the increase in the expected

maximum utility in her consideration set exceeds the incremental cognitive cost of considering the

product. Roberts and Lattin (1991) put this framework into action by parameterizing the utility

of each product as a function of its features. Mehta et al. (2003) give a similar consideration set

model by balancing utility with consideration cost, but they can estimate their model even when

they do not know the consideration sets of the customers. Andrews and Srinivasan (1995) give

a comprehensive discussion of probabilistic and deterministic consideration set models. There is

also behavior science work to explain the use of consideration sets. Miller (1956) discusses the

limited information processing capacity in humans to motivate consideration sets. Stigler (1961)

gives stylized models to show the diminishing benefit from doing extended searches, supporting

small consideration sets observed in practice. Gensch (1987) use data to validate a choice process

that first eliminates some alternatives based on their attributes, then makes a final pick. Alba and

Hutchinson (1987) link the size of the consideration set of a customer to her expertise. Hauser

(2014) discusses the rules of thumb that the customers use to form their consideration sets.

Under the standard multinomial logit model, Gallego et al. (2004) and Talluri and van Ryzin

(2004) show that the revenue-maximizing assortment includes a certain number of products with

the largest revenues. Rusmevichientong et al. (2010) and Sumida et al. (2020) focus on the

case where there are constraints on the offered assortment. Bront et al. (2009), Mendez-Diaz

et al. (2014), Rusmevichientong et al. (2014) and Desir and Goyal (2014) study the assortment

optimization problem under a mixture of multinomial logit models. For representative work on

assortment optimization under other choice models, such as the preference list-based, nested logit,

paired combinatorial logit and Markov chain choice model, we refer to Davis et al. (2014), Blanchet

et al. (2016), Aouad et al. (2018), Zhang et al. (2020) and Berbeglia and Joret (2020).
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3. Multinomial Logit Model with Rank Cutoffs

We formulate the multinomial logit model with rank cutoffs and give an expression for the choice

probabilities of the products. The set of products is N = {1, . . . , n}. The set of possible values for

rank cutoffs is M = {1, . . . ,m}. The utility of product i is given by the random variable Ui, which

has the Gumbel distribution with location-scale parameters (µi,1). Letting vi = eµi , we refer to

vi as the preference weight of product i. We capture the total preference weight of the products

in the assortment S ⊆ N by V (S) =
∑

i∈S vi. The utility of the no-purchase option is given by

the random variable U0, which has the Gumbel distribution with location-scale parameters (0,1).

Lastly, the rank cutoff of a customer is given by the random variable Y taking values in M . We

capture the distribution of Y by λk = P{Y = k}, where we have
∑

k∈M λk = 1. The random variables

{Ui : i∈N}, U0 and Y are independent of each other.

Given that we offer the assortment S, a customer with rank cutoff k makes her choice as

follows. The customer associates utilities with all products, including those not offered, as well as

the no-purchase option. The available alternatives are the products in the offered assortment S

and the no-purchase option. The customer only considers the top k alternatives with the largest

utilities and chooses the available alternative that provides the largest utility. If there is no available

alternative within the top k alternatives, then the customer leaves without making a purchase.

Thus, a customer leaves without making a purchase when none of the k most preferred alternatives

is offered or the no-purchase option is the available alternative that provides the largest utility.

We assume that m≤ n, so the rank cutoff does not exceed the number of products. To derive the

choice probabilities of the products, we use two properties of Gumbel random variables.

• (Maximum of Gumbel Random Variables) LetX and Y be independent Gumbel random

variables with location-scale parameters (µ,1) and (η,1). In this case, max{X,Y } is a Gumbel

random variable with location-scale parameters (log(eµ + eη),1). Also, we have

P{X ≥ Y }=
eµ

eµ + eη
.

• (Independence from Top Ranked Choices) Let {Xi : i∈G} be a collection of independent

Gumbel random variables, where Xi has location-scale parameters (µi,1). For any partition

of {i1, . . . , ip} and {j1, . . . , jq} of G, we have

P
{
Xj1 ≥ . . .≥Xjq

∣∣∣Xi1 ≥ . . .≥Xip ≥max{Xj1 , . . . ,Xjq}
}

= P
{
Xj1 ≥ . . .≥Xjq

}
.

To interpret the second property, view Xi as the utility of alternative i. By the second property,

given that the alternatives {i1, . . . , ip} are the top p alternatives in G with utilities satisfying

the order Xi1 ≥ . . .≥Xip , the conditional choice process of a customer among the remaining
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alternatives {j1, . . . , jq} is identical to the unconditional choice process among the alternatives

{j1, . . . , jq}. The first property is standard; see Section 7.2.2.3 in Talluri and van Ryzin (2004).

The second property is used in other settings in different forms; see, for example, (4) in Beggs

et al. (1981) and (3.12) in Hanemann (1984). For completeness, we show the second property in

Appendix A in the form we use. In the next theorem, we use these properties to give an expression

for the choice probabilities. Throughout the paper, we let S−i = S \ {i} and a∨ b= max{a, b}.

Theorem 3.1 (Recursion for Choice Probabilities) For each k ∈ M and S ⊆ N , setting

B1(·, ·) = 1, define Bk(S,N) recursively as

Bk(S,N) = 1 +
∑
i∈N\S

vi
1 +V (N−i)

Bk−1(S,N−i). (1)

Then, given that we offer the assortment S, a customer with rank cutoff k purchases product i∈ S
with probability πki (S) = vi

1+V (N)
Bk(S,N).

Proof: We use induction over the rank cutoff to show the result for any set of products N , S ⊆N and

k∈M . A customer with rank cutoff one purchases product i∈ S only when the utility of product i

is the largest among all utilities, so π1
i (S) = P{Ui ≥U0 ∨maxj∈N−i Uj} = vi

1+V (N)
, where the last

equality follows from the first property before the theorem and the fact that V (S) =
∑

i∈S e
µi . Thus,

since B1(·, ·) = 1, the result holds for k= 1. Assuming that the result holds for rank cutoff of k−1,

we show that the result holds for rank cutoff of k. A customer with rank cutoff k purchases product

i∈ S only under two possibilities. First, product i may have the largest utility among all utilities,

in which case, the customer indeed purchases product i. Second, some product j ∈N\S may have

the largest utility among all utilities, in which case, product j occupies the top spot, leaving k− 1

spots for the remaining products N−j and the no-purchase option. By the second property before

the theorem, conditional on the fact that product j occupies the top spot, the choice process among

the remaining products N−j and the no-purchase option is identical to the unconditional choice

process, so the probability that the customer purchases product i is identical to the probability that

a customer with rank cutoff k−1 chooses product i when the set of all products is N−j. Using the

induction assumption with the set of products N−j, the latter probability is vi
1+V (N−j)

Bk−1(S,N−j).

Collecting the two possibilities, we get

πki (S) =
vi

1 +V (N)
+
∑
j∈N\S

vj
1 +V (N)

vi
1 +V (N−j)

Bk−1(S,N−j)

=
vi

1 +V (N)

(
1 +

∑
j∈N\S

vj
1 +V (N−j)

Bk−1(S,N−j)

)
=

vi
1 +V (N)

Bk(S,N),

where the first equality holds since, by the first property of Gumbel random variables before the

theorem, the probability that product ` has the largest utility among the utilities of all products
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and the no-purchase option is given by v`
1+V (N)

, whereas the last equality holds by the definition of

Bk(S,N) in (1). Thus, the result holds for rank cutoff of k as well.

Given that we offer the assortment S, a customer with rank cutoff one purchases product i∈ S if

and only if product i has the largest utility among all products and the no-purchase option. Thus,

using the first property of Gumbel random variables, a customer with rank cutoff one purchases

product i with probability P{Ui ≥U0 ∨maxj∈N−i Uj}= vi
1+V (N)

. By the theorem above, given that

we offer the assortment S, a customer with rank cutoff k purchases product i∈ S with probability

πki (S) = vi
1+V (N)

Bk(S,N). Thus, we can view Bk(S,N) as the increase in the purchase probability

of product i due to the fact that the customer has rank cutoff k rather than one. Under our

choice model, this increase in the purchase probability turns out to be the same for all products.

A customer has rank cutoff k with probability λk. Therefore, if we offer the assortment S, then a

customer purchases product i∈ S with probability

φi(S) =
∑
k∈M

λk πki (S) =
vi

1 +V (N)

∑
k∈M

λkBk(S,N). (2)

The number of operations to compute Bk(S,N) through (1) increases exponentially with k, so

the number of operations to compute φi(S) increases exponentially with m.

Relationship to the Preference List-Based Choice Model:

Our multinomial logit model with rank cutoffs is a preference list-based choice model. In the

preference list-based choice model, each customer arrives into the system with a random preference

list of the products and no-purchase option, choosing the available alternative with the highest

rank in her preference list. The distribution of the random preference lists specifies the choice

probabilities. Letting Ω be the set of all possible permutations of N ∪ {0}= {0,1, . . . , n}, we use

rank(i,ω) to denote the rank of alternative i in permutation ω. For permutation ω= (4,3,0,2,5,1),

for example, we have rank(4, ω) = 1, rank(0, ω) = 3 and rank(1, ω) = 6. In the preference list-based

choice model, we use the random variable W taking values in Ω to capture the preference list of

a customer. Letting 1(·) be the indicator function, under the preference list-based choice model, if

we offer the assortment S, then a customer purchases product i∈ S with probability

ψi(S) =
∑
ω∈Ω

P{W = ω} 1
(

rank(i,ω)< rank(j,ω) ∀ j ∈ S−i ∪{0}
)
, (3)

where use the fact that a customer purchases product i when the product has the highest rank

among all of the products in the offered assortment, as well as the no-purchase option.

We show that our multinomial logit model with rank cutoffs can be viewed as a preference

list-based choice model, where the distribution of the preference lists is characterized by the Gumbel
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distributions driving the utilities of the products and no-purchase option, as well as the distribution

of the rank cutoff. This discussion will also demonstrate how the utility of the no-purchase option

and the rank cutoff jointly determine the distribution of the ranking of the unique no-purchase

option in the preference list-based choice model. We use the random variable Z taking values

in Ω to capture the ranking of the utilities of the products and no-purchase option, each sampled

from the corresponding Gumbel distribution. For example, if the utilities of the alternatives satisfy

U4 > U3 > U0 > U2 > U5 > U1, then Z = (4,3,0,2,5,1). We continue using the random variable Y

taking values in M = {1, . . . , n} to capture the rank cutoff of a customer. In this case, under our

multinomial logit model with rank cutoffs, if we offer the assortment S, then a customer purchases

product i∈ S with probability

φi(S) =
∑
k∈M

∑
w∈Ω

P{Y = k, Z = ω} 1
(

rank(i,ω)< rank(j,ω) ∀ j ∈ S−i ∪{0}
)

1
(

rank(i,ω)≤ k
)
, (4)

where we use the fact that a customer with rank cutoff k purchases product i when the ranking of

the utility of product i is at most k and it is highest among all available alternatives.

To express the choice probability in (4) as a special case of the one in (3), we use flip(k,ω)

to denote the permutation obtained by bumping up the ranking of the no-purchase option in

permutation ω to k if the ranking of the no-purchase option is below k. If the ranking of the

no-purchase option in permutation ω is higher than k, then permutation flip(k,ω) is identical

to permutation ω. For example, if ω = (4,3,2,0,5,1), then we have flip(2, ω) = (4,0,3,2,5,1) and

flip(5, ω) = (4,3,2,0,5,1). We make two observations. First, all products with rank higher than k in

permutation ω maintain their ranking in permutation flip(k,ω). In other words, if rank(i,ω)<k, then

we have rank(i,ω) = rank(i,flip(k,ω)). Second, the ranking of the no-purchase option in permutation

flip(k,ω) is the minimum of k and its ranking in permutation ω. Therefore, letting a∧b= min{a, b},

we have rank(0,flip(k,ω)) = rank(0, ω)∧ k. In this case, we obtain the chain of equalities

1
(

rank(i,ω)< rank(0, ω)
)

1
(

rank(i,ω)<k+ 1
)

= 1
(

rank(i,flip(k+ 1, ω))< rank(0, ω)
)

1
(

rank(i,flip(k+ 1, ω))<k+ 1
)

= 1
(

rank(i,flip(k+ 1, ω))< rank(0, ω)∧ (k+ 1)
)

= 1
(

rank(i,flip(k+ 1, ω))< rank(0,flip(k+ 1, ω)
)
, (5)

where the first equality holds because rank(i,ω)< k+ 1 implies rank(i,ω) = rank(i,flip(k+ 1, ω)) by

the first observation, whereas the last equality uses the second observation.

If product i was ranked higher than product j in permutation ω, then it is still ranked higher

than product j in permutation flip(k,ω), so for all i, j ∈ N , rank(i,ω) < rank(j,ω) if and only if
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rank(i,flip(k,ω))< rank(j,flip(k,ω)). Thus, the expression 1(rank(i,ω)< rank(j,ω) ∀ j ∈ S−i ∪ {0})×
1(rank(i,ω)≤ k) in (4) is equivalently given by

1
(

rank(i,ω)< rank(j,ω) ∀ j ∈ S−i ∪{0}
)

1
(

rank(i,ω)≤ k
)

= 1
(

rank(i,ω)< rank(j,ω) ∀ j ∈ S−i
)

1
(

rank(i,ω)< rank(0, ω)
)

1
(

rank(i,ω)<k+ 1)
)

= 1
(

rank(i,ω)< rank(j,ω) ∀ j ∈ S−i
)

1
(

rank(i,flip(k+ 1, ω))< rank(0,flip(k+ 1, ω))
)

= 1
(

rank(i,flip(k+ 1, ω))< rank(j,flip(k+ 1, ω)) ∀ j ∈ S−i ∪{0}
)
, (6)

where the second equality uses (5), whereas the third equality holds because rank(i,ω)< rank(j,ω)

if and only if rank(i,flip(k+ 1, ω))< rank(j,flip(k+ 1, ω)) for all i, j ∈N .

Using (6) in (4), under our multinomial logit model with rank cutoffs, if we offer the assortment S,

then a customer purchases product i∈ S with probability

φi(S) =
∑
k∈M

∑
w∈Ω

P{Y = k, Z = ω} 1
(

rank(i,flip(k+ 1, ω))< rank(j,flip(k+ 1, ω)) ∀ j ∈ S−i ∪{0}
)

=
∑
k∈M

∑
w∈Ω

P{Y = k, Z = ω}
∑
η∈Ω

{
1
(
η= flip(k+ 1, ω)

)
1
(

rank(i, η)< rank(j, η) ∀ j ∈ S−i ∪{0}
)}

=
∑
η∈Ω

{∑
k∈M

∑
w∈Ω

P{Y = k, Z = ω}1
(
η= flip(k+ 1, ω)

)}
1
(

rank(i, η)< rank(j, η) ∀ j ∈ S−i ∪{0}
)
,

where the second equality holds by noting that we have the identity f(ω) =
∑

η∈Ω 1(η= ω)f(η) for

any function f : Ω→R, whereas the third equality follows by arranging the terms.

Letting P{W = η}=
∑

k∈M
∑

w∈Ω P{Y = k, Z = ω}1(η= flip(k+1, ω)), the last expression above

is
∑

η∈Ω P{W = η}1(rank(i, η)< rank(j, η) ∀ j ∈ S−i ∪{0}), which has the same form as the choice

probability under the preference list-based choice model in (3). Thus, our multinomial logit model

with rank cutoffs is a preference list-based choice model, where an arriving customer has the

preference list η with probability
∑

k∈M
∑

w∈Ω P{Y = k, Z = ω}1(η = flip(k + 1, ω)). Based on

this result, we make three observations. First, our choice model is a parameterized version of the

preference list-based choice model, where the distributions of the utilities and rank cutoff determine

the distribution of the preference lists. Second, the utilities of the alternatives and rank cutoff

jointly determine the ranking of the unique no-purchase option in the preference list-based choice

model. In particular, if the rank cutoff of a customer is k, then we bump up the utility of the

no-purchase option to just below the utility of the alternative at rank k. Third, it is not possible to

give a PTAS for the assortment optimization problem under a general preference list-based model;

see Theorem 1 in Aouad et al. (2018). In our choice model, the distribution of the preference lists

is characterized by the distribution of the utilities and rank cutoff, which, surprisingly, gives way

to a choice model that admits a PTAS for its corresponding assortment optimization problem.
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Implications on Rationality and Customer Choice Process:

Recalling the Gumbel utility random variables {Ui : i∈N ∪{0}} at the beginning of this section,

consider the case where we offer all products except for the first one. Under our choice model, if a

customer with rank cutoff of one evaluates the alternatives as U1 >U2 > . . . > Un >U0, then this

customer leaves without a purchase because her top choice is not available and the rank cutoff of

one prevents her from entertaining any alternative other than her top choice. In other words, this

customer leaves without a purchase even though there exist products in the offered assortment,

such as products 2,3, . . . , n, with utilities larger than the utility of the no-purchase option. Thus,

our choice model is not compatible with utility-maximizing behavior with respect to the utility

random variables {Ui : i ∈N ∪ {0}}. On the other hand, by the earlier discussion, there exists an

equivalent preference list-based choice model that acts like our choice model in that it produces

the same choice probabilities. The equivalent preference list-based choice model is compatible with

random utility maximization, but the utility random variables that make the equivalent preference

list-based choice model compatible with random utility maximization are likely not the Gumbel

utilities {Ui : i ∈N ∪{0}}. In that sense, a rational customer could behave in line with the choice

probabilities of our choice model, but our choice model does not reflect the behavior of a merely

utility-maximizing customer with respect to the utilities {Ui : i∈N ∪{0}}. As a result, our choice

model should not be taken as a literal model of how customers act.

Our choice model can be viewed as a preference list-based choice model in which the preference

list of a customer with rank cutoff of k has length at most k. We do not explicitly model the

cognitive process behind the construction of the preference lists, but the effort to construct a list

of top k choices can be significantly different from constructing full preference lists including all

alternatives, lending support for preference lists with small lengths. In particular, if there are n

alternatives under consideration, then forming a full preference list requires O(n2) comparisons

between the alternatives in the worst case, whereas forming a preference list of top k alternatives

requires O(nk) comparisons. Ruling out products other than top k choices may be viewed through

the lens of bounded rationality; see Simon (1955), Rubinstein (1998) and Kahneman (2003).

Rational customers would be better off if they were to evaluate all utilities and purchase a product

as long as its utility exceeds that of the no-purchase option. However, the effort to evaluate all

products or the possible disappointment due to settling for an alternative worse than one of the

top k choices may lead a customer to decide that evaluating all alternatives is not worth the

effort. Customers may form short preference lists for other reasons as well. For example, those

who dislike decaffeinated coffee may immediately eliminate such options without making any

comparisons. Similarly, customers may eliminate airfare options by time of departure. In our choice

model, the distribution of the rank cutoffs controls the length of the preference lists.



Bai, Feldman, Topaloglu, Wagner; Multinomial Logit Model with Rank Cutoffs; August 31, 2023 15

4. Assortment Optimization Problem

We give our assortment optimization problem and characterize its complexity. Under the standard

multinomial logit model, given that we offer the assortment S, the choice probability of a product

depends on the preference weights of the other products only through V (S). Under our choice

model, by the discussion in the previous section, the choice probability of a product depends

on the preference weight of the other products through
∑

k∈M λkBk(S,N), ultimately making

our assortment optimization problem significantly more difficult. In our assortment optimization

problem, the revenue of product i is ri ≥ 0. Noting (2), if we offer the assortment S, then a

customer chooses product i with probability φi(S), in which case, the expected revenue from

a customer is
∑

i∈S ri φi(S). Our goal is to find an assortment that maximizes the expected

revenue. Therefore, letting W (S) =
∑

i∈S ri vi, using (2), we want to solve the problem

max
S⊆N

{∑
i∈S

ri φi(S)

}
=

1

1 +V (N)
max
S⊆N

{
W (S)

∑
k∈M

λkBk(S,N)

}
. (7)

The assortment optimization problem above turns out to be NP-hard. To show this result, we

consider the feasibility version of our assortment optimization problem.

Assortment Feasibility Problem: Given an expected revenue threshold K, does there exist

an assortment that provides an expected revenue of K or more?

Theorem 4.1 (Computational Complexity) The feasibility version of the assortment

optimization problem in (7) is NP-complete.

We give the proof of the theorem in Appendix B. The proof uses a reduction from the partition

problem, which is a well-known NP-complete problem; see Garey and Johnson (1979).

To put Theorem 4.1 into perspective, consider two edge cases. First, if the rank cutoff of all

customers is n, then a customer simply chooses the available alternative with the largest utility, so

our choice model reduces to the standard multinomial logit model. Under the standard multinomial

logit model, there exists a revenue-ordered optimal solution to problem (7), including a certain

number of products with the largest revenues. Thus, we can obtain the optimal assortment by

checking the expected revenue from each revenue-ordered assortment. Second, if the rank cutoff

of all customers is one, then a customer focuses only on the top alternative with the largest

utility and chooses this alternative if it is available. If all customers have a rank cutoff of one,

then the objective function of problem (7) reduces to 1
1+V (N)

W (S), in which case, the optimal

assortment is obtained by setting S =N . Therefore, the assortment optimization problem admits
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Exp. Choice Prob.
Assrt. Rev. 1 2 3

∅ 0.0 0.0 0.0 0.0
{1} 13.060 0.131 0.0 0.0
{2} 11.745 0.0 0.979 0.0
{3} 7.543 0.0 0.0 0.838

Exp. Choice Prob.
Assrt. Rev. 1 2 3

{1,2} 14.681 0.032 0.957 0.0
{1,3} 20.0 0.125 0.0 0.833
{2,3} 11.351 0.0 0.811 0.180
{1,2,3} 13.684 0.026 0.789 0.175

Table 1 Expected revenues and choice probabilities for different assortments.

a polynomial-time solution in the two edge cases. By Theorem 4.1, if customers have rank cutoffs

between the two edge cases, then problem (7) is NP-hard. To demonstrate how the revenues

and preference weights of the products interact in problem (7), consider a problem instance with

three products. The revenues and preference weights are given by (r1, r2, r3) = (100,12,9) and

(v1, v2, v3) = (3,90,20). All customers have rank cutoff of 2, so m = 2 and (λ1, λ2) = (0,1). In

Table 1, we give the choice probability of each product under each assortment, along with the

corresponding expected revenue from the assortment.

The optimal assortment is {1,3} with an expected revenue of 20. This assortment is not

revenue-ordered, as it includes the products with the largest and smallest revenue but skips the

product with the second largest revenue. If we offer the assortment {1}, then the choice probability

of product 1 is 0.131, but there are no other products to generate revenue, so the probability of

no-purchase is 0.869. If we add product 3 to the assortment {1}, so the offered assortment is {1,3},

then the choice probabilities of products 1 and 3 are 0.125 and 0.833. Adding product 3, which

has a moderate preference weight, does not reduce the demand for product 1 significantly, but it

reduces the probability of no-purchase drastically. If we add product 2 to the assortment {1}, so

the offered assortment is {1,2}, then the choice probabilities of products 1 and 2 are 0.032 and

0.957. Adding product 2, which has a large preference weight, substantially reduces the demand

for product 1. Although not reported in the table, if all customers have rank cutoff of 3, then the

optimal assortment is {1}. Under rank cutoff of 3, if we offer the assortment {1}, then the purchase

probability of product 1 is 0.75. As the rank cutoff increases from 2 to 3, intuitively speaking, the

customers become more willing to substitute, so the purchase probability of product 1 within the

assortment {1} drastically increases from 0.131 to 0.75.

In our choice model, a customer with rank cutoff k leaves without a purchase when none of

the k alternatives with the largest utilities is available or when the utility of the no-purchase

option exceeds those of all other available alternatives. A variant of our choice model occurs when

the utility of the no-purchase option has location parameter of negative infinity. In this case, a

customer with rank cutoff k leaves without a purchase only when none of the k alternatives with

the largest utilities are available. Under this variant, a customer leaves without a purchase only

when she cannot find one of her most preferred products as determined by her rank cutoff, which
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characterizes the minimal acceptable utility for the customer. The assortment optimization problem

is still NP-hard under this variant, but our PTAS can be used to obtain an approximate solution.

Impact of Rank Cutoffs:

If all customers have rank cutoff of n, then our choice model becomes equivalent to the standard

multinomial logit model. In our choice model, however, not all customers have rank cutoff of n.

Intuitively speaking, smaller rank cutoffs translate into choosier customers, so the customers

choosing according to our choice model are choosier than those choosing according to the standard

multinomial logit model. Accordingly, we can show that the optimal solution to our assortment

optimization problem includes all products in an optimal solution to the assortment optimization

problem under the standard multinomial logit model. Thus, to maximize the expected revenue

from choosier customers, we need to offer a larger assortment. Under the standard multinomial

logit model, if we offer the assortment S, then a customer chooses product i ∈ S with probability

vi
1+V (S)

, in which case, we can find the optimal assortment by solving the problem

max
S⊆N

{∑
i∈S ri vi

1 +V (S)

}
. (8)

In the next theorem, we show that the optimal assortment in (7) under our choice model includes

the optimal optimal assortment in (8) under the standard multinomial logit model.

Theorem 4.2 (Impact of Rank Cutoffs) There exist an optimal solution S∗ to problem (7)

and an optimal solution S̃ to problem (8) such that S∗ ⊇ S̃.

We give the proof of the theorem in Appendix C. We can also argue that the optimal expected

revenue under our choice model, which captures choosier customers, cannot exceed the optimal

expected revenue under the standard multinomial logit model. In particular, a simple lemma that

we use when giving a proof for Theorem 4.2, given as Lemma C.1 in Appendix C, shows that

1
1+V (N)

Bk(S,N) ≤ 1
1+V (S)

, in which case, by Theorem 3.1, we obtain πki (S) = vi
1+V (N)

Bk(S,N) ≤
vi

1+V (S)
for any S ⊆N . Therefore, using the fact that

∑
k∈M λk = 1, the last chain of inequalities

yields φi(S) =
∑

k∈M λk πki (S)≤ vi
1+V (S)

. Using S∗ to denote an optimal solution to our assortment

optimization problem in (7), we obtain maxS⊆N
∑

i∈S ri φi(S) =
∑

i∈S∗ ri φi(S
∗) ≤

∑
i∈S∗ ri vi

1+V (S∗) ≤

maxS⊆N
∑
i∈S ri vi

1+V (S)
. Thus, the optimal expected revenue under our choice model cannot exceed the

optimal total expected revenue under the standard multinomial logit model.

We can ask several questions based on Theorem 4.2. As a first question, noting that S̃ is the

revenue-maximizing assortment under the standard multinomial logit model, one may ask whether
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this assortment provides a performance guarantee for the assortment optimization problem under

our choice model. The answer to this question is negative. The revenue-maximizing assortment

under the standard multinomial logit model can perform arbitrarily badly for our assortment

optimization problem. Consider a problem instance with two products, where the revenues and

preference weights are (r1, r2) = (4,1) and (v1, v2) = (1, v). All customers have rank cutoff of one.

The revenue-maximizing assortment under the standard multinomial logit model is S̃ = {1}. Noting

that π1
i (S) = vi

1+V (N)
by Theorem 3.1, if we offer the assortment S̃, then the expected revenue that

we obtain under our choice model is 4
2+v

, which gets arbitrarily close to zero when v is arbitrarily

large. However, if we offer the assortment {1,2}, then the expected revenue that we obtain under

our choice model is 4+v
2+v

, which gets arbitrarily close to one when v is arbitrarily large. Thus, the

assortment S̃ can perform arbitrarily badly for our assortment optimization problem.

By the discussion right after Theorem 4.1, under the standard multinomial logit model, there

exists a revenue-maximizing assortment that is revenue-ordered. By the discussion in the previous

paragraph, this assortment can perform arbitrarily badly for our assortment optimization problem.

As a second question, one may ask whether we get a performance guarantee for our assortment

optimization problem if we check the expected revenue of all revenue-ordered assortments for

our assortment optimization problem and pick the best one. We partially answer this question.

In Appendix D, we show that if the rank cutoff of a customer does not exceed two, then the

best revenue-ordered assortment is a 1
2
-approximation for the assortment optimization problem

under our choice model. Furthermore, we show that this bound is tight in the sense that the best

revenue-ordered assortment can never provide a performance guarantee better than 1
2
. Despite our

best efforts, we are not able to settle whether the best revenue-ordered assortment still provides a

performance guarantee when the rank cutoffs take values of three or more.

Let S∗κ be the optimal solution under our choice model when all customers have rank cutoff

of κ. That is, S∗κ is an optimal solution to problem (7) when λκ = 1 and λk = 0 for all k ∈M−κ.

If all customers have rank cutoff of n, then our choice model reduces to the standard standard

multinomial logit model. Thus, Theorem 4.2 implies that S∗κ ⊇ S∗n for all κ= 1, . . . , n. As a third

question, one may ask whether the optimal assortments are nested in rank cutoffs. In other

words, one may ask whether we have S∗1 ⊇ S∗2 ⊇ . . . ⊇ S∗n−1 ⊇ S∗n. The answer to this question

is negative. Consider a problem instance with five products, where the revenues and preference

weights are (r1, r2, r3, r4, r5) = (96,69,33,30,10) and (v1, v2, v3, v4, v5) = (7,16,1,0.2,12). For this

problem instance, we have S∗2 = {1,2}, S∗3 = {1,3,4} and S∗5 = {1}. As predicted by Theorem 4.2,

S∗2 ⊇ S∗5 and S∗3 ⊇ S∗5 , but we do not have S∗2 ⊇ S∗3 . Furthermore, this problem instance shows that

we may not even have |S∗1 | ≥ |S∗2 | ≥ . . .≥ |S∗n−1| ≥ |S∗n|, as |S∗2 |= 2 and |S∗3 |= 3.
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5. Polynomial-Time Approximation Scheme

To give a PTAS for problem (7), for some accuracy parameter ε∈ (0,1), we partition the products

into product classes such that the product of the preference weight and revenue for the products in

each class is within a factor of 1 + ε of each other. Then, we proceed in two parts. First, we argue

that there exists a (1− ε)2-approximate solution that offers products only in O( log(n/ε)

ε
) product

classes. Also, this assortment is light in the sense that the products that the assortment offers in

each product class correspond to those with the smallest preference weights. Second, we construct

a collection of O((n/ε)
O(1/ε2)

) light assortments such that this collection includes an assortment

whose expected revenue deviates from that of the best light assortment by a factor of at most 1− ε.
In this section, we explain what we precisely mean in the two parts and put the two parts together

to give our PTAS. As we develop our PTAS, we summarize the notation in Table 2.

Letting wi = ri vi, we refer to wi as the weight of product i. Fixing some ε ∈ (0,1), for each

g ∈ Z, we construct product class g as Ng = {i∈N : (1 + ε)g ≤wi < (1 + ε)g+1}. Therefore, if we

round the weights of the products in product class g down to the nearest integer power of 1 + ε,

then the rounded weight is (1 + ε)g. For all i ∈Ng, let wi = (1 + ε)g, which is the rounded weight

of the products in product class g. Note that wi ≤ wi ≤ (1 + ε)wi by our construction, so letting

W (S) =
∑

i∈S wi, we have W (S) ≤ W (S) ≤ (1 + ε)W (S). We use S light
g (k) ⊆ Ng to denote the

assortment that includes the k products with the smallest preference weights in product class g. We

say that the assortment S ⊆N is light if S ∩Ng ∈ {S light
g (k) : k = 0, . . . , |Ng|} for all g ∈ Z. That is,

an assortment is light if the products that it offers in each product class correspond to those with

the smallest preference weights in the class. We will proceed in two steps.

Part 1. Existence of an Ideal Light Assortment: We will show that there exists a light

assortment Ŝ that satisfies the following two properties.

• (Bounded Support) Letting Ĝ = {g ∈ Z : Ŝ ∩Ng 6= ∅}, we have |Ĝ| = O( log(n/ε)

ε
), so the

assortment Ŝ offers products in O( log(n/ε)

ε
) product classes.

• (Limited Degradation) Letting S∗ be an optimal solution to problem (7), we have

W (Ŝ)≥ (1− ε)W (S∗) and Bk(Ŝ,N)≥Bk(S∗,N) for all k ∈M .

Since W (S) ≤W (S) ≤ (1 + ε)W (S), using the limited degradation property, W (Ŝ) ≥W (Ŝ) ≥
(1− ε)W (S∗)≥ 1−ε

1+ε
W (S∗). Also noting that Bk(Ŝ,N)≥Bk(S∗,N) for all k ∈M , we get

1

1 +V (N)

{
W (Ŝ)

∑
k∈M

λkBk(Ŝ,N)

}
≥

1−ε
1+ε

1 +V (N)

{
W (S∗)

∑
k∈M

λkBk(S∗,N)

}
. (9)

Using the fact that 1−ε
1+ε
≥ (1 − ε)2, the inequality above implies that the assortment Ŝ is a

(1− ε)2-approximate solution to problem (7). In other words, there exists a light assortment Ŝ
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that offers products only in O( log(n/ε)

ε
) product classes and corresponds to a (1− ε)2-approximate

solution to problem (7). We refer to this assortment as the ideal light assortment.

Part 2. Candidate Assortments: Letting Ŝ be the ideal light assortment in Part 1, we will

construct a collection of assortments {At : t∈A} that satisfies the following two properties.

• (Small and Light Collection) There are O((n/ε)
O(1/ε2)

) assortments in the collection and

each one of the assortments is light.

• (Approximation to Ideal) Letting Ĝ = {g ∈ Z : Ŝ ∩Ng 6= ∅}, there exists an assortment

S̃ ∈ {At : t∈A} such that

W (S̃ ∩Ng) ≤ W (Ŝ ∩Ng) ≤ W (S̃ ∩Ng) +
ε

|Ĝ|
W (Ŝ) ∀g ∈Z. (10)

The number of operations to construct the collection of assortments {At : t ∈ A} will be

O((n/ε)
O(1/ε2)

). We refer to {At : t∈A} as the collection of candidate assortments.

By the small and light collection property, the number of candidate assortments increases

polynomially with the number of products n and it is independent of the maximum rank cutoff m.

By (10) in the approximation to ideal property, if Ŝ ∩Ng =∅, then S̃ ∩Ng = ∅, so there exists a

candidate assortment that uses no more product classes than the ideal light assortment. Using (10),

we will also show that the expected revenue from this candidate assortment deviates from that of

the ideal light assortment by at most a factor of 1− ε. In our PTAS, we focus on light assortments

because if products i and j have the same weight but product i is lighter than product j so that

wi =wj and vi ≤ vj, then we have W (S∪{i}) =W (S∪{j}) but Bk(S∪{i},N)≥Bk(S∪{j},N) for

{i, j}∩S =∅, so by (7), using product i rather than j yields a larger expected revenue. In Section

6.1, we show that Part 1 holds. In Section 6.2, we show that Part 2 holds. In the remainder of this

section, we put the two parts together in the next theorem to give our PTAS. In this theorem, let

RevOps be the number of operations to compute the expected revenue from an assortment.

Theorem 5.1 (PTAS) For any ε ∈ (0,1), we can find a (1− ε)-approximate solution to problem

(7) in O(RevOps (n/ε)
O(1/ε2)

) operations.

Proof: Let Ŝ be the ideal light assortment in Part 1 and S̃ be the assortment that satisfies the

approximation to ideal property in Part 2. Note that both Ŝ and S̃ are light. We have

(1− ε)W (Ŝ)
(a)
=
∑
g∈Ĝ

{
W (Ŝ ∩Ng)−

ε

|Ĝ|
W (Ŝ)

} (b)

≤
∑
g∈Ĝ

W (S̃ ∩Ng)
(c)
=
∑
g∈Z

W (S̃ ∩Ng) = W (S̃), (11)

where (a) holds since Ŝ ∩Ng = ∅ for all g 6∈ Ĝ, (b) is by (10) and (c) uses the fact that if g 6∈ Ĝ,

then Ŝ ∩Ng = ∅, in which case, S̃ ∩Ng = ∅ by (10). Since Ŝ and S̃ are light, for each g ∈Z, both
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Ng = Set of products in product class g. That is, Ng = {i∈N : (1 + ε)g ≤wi < (1 + ε)g+1}.
wi = Rounded weight of product i. That is, we have wi = (1 + ε)g for all i∈Ng.
W (S) = Total rounded weight of products in the assortment S. That is, W (S) =

∑
i∈S wi.

S light
g (k) = Assortment that includes the k products with the smallest preference weights in product class g.
S∗ = Optimal solution to problem (7).

Ŝ = Ideal light assortment.

Ĝ = Set of product classes used by the ideal light assortment. That is, Ĝ= {g ∈Z : Ŝ ∩Ng 6= ∅}.
S̃ = Candidate light assortment that approximates the ideal light assortment as in (10).
k∗g = Number of products offered by the optimal assortment S∗ in product class g.
g∗max = Largest product class used by the optimal assortment S∗. That is, g∗max = max{g ∈Z : S∗ ∩Ng 6= ∅}.
g∗min = Smallest product class used in our construction of the ideal light assortment as in (12).

Table 2 Notation used in the development of our PTAS.

Ŝ ∩Ng and S̃ ∩Ng include a certain number of products with the smallest preference weights in

product class g. Because Ŝ and S̃ satisfy (10), we have W (S̃∩Ng)≤W (Ŝ∩Ng), so S̃∩Ng ⊆ Ŝ∩Ng

for all g ∈Z. Thus, we get S̃ = ∪g∈Z(S̃ ∩Ng)⊆∪g∈Z(Ŝ ∩Ng) = Ŝ. We use induction over the rank

cutoff to show that Bk(S,N)≥Bk(Q,N) for any set of products N , S ⊆Q⊆N and k ∈M . Since

B1(·, ·) = 1, the result holds for k= 1. Assuming that the results holds for rank cutoff of k− 1, we

show that the result holds for rank cutoff of k. In particular, by (1), we have

Bk(Q,N) = 1 +
∑
i∈N\Q

vi
1 +V (N−i)

Bk−1(Q,N−i)
(d)

≤ 1 +
∑
i∈N\S

vi
1 +V (N−i)

Bk−1(S,N−i) = Bk(S,N),

where (d) holds since we have S ⊆ Q ⊆ N−i for any i ∈ N \Q, so by the induction assumption

with the set of products N−i, we have Bk−1(Q,N−i) ≤ Bk−1(S,N−i), along with the fact that

N \Q⊆N \S, so the sum on the left side of (d) includes fewer terms than the sum on the right side.

By the chain of inequalities above, the result holds for rank cutoff of k. Since S̃ ⊆ Ŝ as discussed

at the beginning of this paragraph, we get Bk(S̃,N)≥Bk(Ŝ,N) for all k ∈M .

Thus, letting S∗ be an optimal solution to problem (7), noting that W (S)≤W (S)≤ (1+ε)W (S)

for any S ⊆N , by (9) and (11), the expected revenue from the assortment S̃ satisfies

1

1 +V (N)

{
W (S̃)

∑
k∈M

λkBk(S̃,N)

}
≥ 1

1 +V (N)

{
W (S̃)

∑
k∈M

λkBk(S̃,N)

}
(e)

≥ 1− ε
1 +V (N)

{
W (Ŝ)

∑
k∈M

λkBk(S̃,N)

}
(f)

≥ 1− ε
1 +V (N)

{
W (Ŝ)

∑
k∈M

λkBk(Ŝ,N)

}

≥
1−ε
1+ε

1 +V (N)

{
W (Ŝ)

∑
k∈M

λkBk(Ŝ,N)

}
(g)

≥
(1−ε)2

(1+ε)2

1 +V (N)

{
W (S∗)

∑
k∈M

λkBk(S∗,N)

}
,

where (e) is by (11), (f) uses the fact that Bk(S̃,N)≥Bk(Ŝ,N) for all k ∈M and (g) is by (9).

Since (1−ε)2

(1+ε)2
≥ (1− ε)4 ≥ 1−4 ε, the assortment S̃ is a (1−4 ε)-approximate solution to problem (7).

Since S̃ ∈ {At : t ∈ A}, the collection of candidate assortments {At : t ∈ A} includes a (1− 4 ε)-

approximate solution to problem (7). By the small and light collection property in Part 2, there are
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O((n/ε)
O(1/ε2)

) assortments in the collection and we can construct the collection in O((n/ε)
O(1/ε2)

)

operations. Thus, by constructing the collection of candidate assortments and checking the expected

revenue from each assortment in O(RevOps (n/ε)
O(1/ε2)

) operations, we get a (1−4 ε)-approximate

solution to problem (7). Given any δ ∈ (0,1), by repeating the discussion in the proof with ε= δ/4,

we get a (1− δ)-approximate solution in O(RevOps (n/δ)
O(1/δ2)

) operations.

We can use (1)-(2) to compute the choice probability φi(S) for each product i ∈ S, in which

case, the expected revenue from assortment S is
∑

i∈S ri φi(S). By the discussion right after

(2), the number of operations to compute φi(S) increases exponentially with the maximum rank

cutoff m, so the number of operations to compute the expected revenue from an assortment,

which we denote by RevOps, increases exponentially with m as well. In Appendix E, however,

letting θ= ( 1
n

+ maxi∈N vi)/mini∈N vi for notational brevity, we show that we can use simulation

in our PTAS to estimate the expected revenue from an assortment with O( θ n
2

ε4
log(n/ε)) samples

of product utilities to obtain a (1− 6 ε)-approximate solution with 1− ε probability, eliminating

the exponential dependence of the running time of our PTAS on m.

6. Ideal Light Assortment and Candidate Collection

Considering Parts 1 and 2 in the previous section, we show that there exists a light assortment

that satisfies Part 1 and construct the collection of candidate assortments that satisfies Part 2.

6.1 Existence of an Ideal Light Assortment

We show that there exists an ideal light assortment Ŝ that satisfies the bounded support and

limited degradation properties in Part 1. Letting S∗ be an optimal solution to problem (7), we set

k∗g = |S∗ ∩Ng|, which is the number of products offered by the optimal assortment S∗ in product

class g. Recalling that S light
g (k) is the assortment that includes the k products with the smallest

preference weights in product class g, we set Ŝg = S light
g (k∗g). Thus, the assortment Ŝg offers the same

number of products in product class g as the optimal assortment S∗, but it offers the products with

the smallest preference weights. Lastly, we set g∗max = max{g ∈Z : S∗ ∩Ng 6=∅}, which is the largest

product class in which the optimal assortment S∗ offers a product. Using d·e to denote the round up

function, letting L= d log(n/ε)

log(1+ε)
e and g∗min = g∗max−L+ 1, we set the ideal light assortment Ŝ as

Ŝ =

g∗max⋃
g=g∗

min

Ŝg. (12)

By construction, the assortment Ŝ is light. Also, it offers products in g∗max− g∗min + 1 = d log(n/ε)

log(1+ε)
e=

O( log(n/ε)

ε
) product classes. Thus, the assortment Ŝ satisfies the bounded support property in Part 1.
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In the next proposition, we show that the assortment Ŝ that we construct as in (12) satisfies the

limited degradation property in Part 1 as well.

Proposition 6.1 (Limited Degradation) Letting S∗ be an optimal solution to problem (7) and

Ŝ be as in (12), we have W (Ŝ)≥ (1− ε)W (S∗) and Bk(Ŝ,N)≥Bk(S∗,N) for all k ∈M .

Proof: Note that the assortment Ŝ offers products only in product classes g∗min, . . . , g
∗
max.

Furthermore, the set of products that the assortment Ŝ offers in product class g is Ŝg, where we

have |Ŝg|= k∗g . Lastly, by the discussion at the beginning of Section 5, we have wi = (1 + ε)g for all

i∈Ng. Therefore, we have W (Ŝ) =
∑g∗max

g=g∗
min

∑
i∈Ŝg wi =

∑g∗max
g=g∗

min
(1 + ε)g k∗g . On the other hand, the

largest product class in which the optimal assortment S∗ offers a product is g∗max, which implies

that W (S∗) =
∑g∗max

g=−∞
∑

i∈S∗∩Ng wi =
∑g∗max

g=−∞
∑

i∈S∗∩Ng(1 + ε)g =
∑g∗max

g=−∞(1 + ε)g k∗g , where the last

equality uses the fact that k∗g = |S∗ ∩Ng|. Thus, we get

W (Ŝ) =

g∗max∑
g=g∗

min

(1 + ε)g k∗g =

g∗max∑
g=−∞

(1 + ε)g k∗g −
g∗min−1∑
g=−∞

(1 + ε)g k∗g = W (S∗)−
g∗min−1∑
g=−∞

(1 + ε)g k∗g

≥ W (S∗)− (1 + ε)g
∗
min−1

g∗min−1∑
g=−∞

k∗g
(a)

≥ W (S∗)−n (1 + ε)g
∗
max−L

(b)

≥ W (S∗)−n (1 + ε)g
∗
max (1 + ε)− log1+ε(n/ε) = W (S∗)− ε (1 + ε)g

∗
max

(c)

≥ (1− ε)W (S∗),

where (a) holds since g∗min = g∗max − L+ 1 and
∑g∗min−1

g=−∞ k∗g ≤
∑∞

g=−∞ k
∗
g ≤ n, (b) is by noting that

L≥ log(n/ε)

log(1+ε)
= log1+ε(n/ε) and (c) follows as S∗ ∩Ng∗max

6=∅, so W (S∗)≥ (1 + ε)g
∗
max .

Next, we show that Bk(Ŝ,N)≥Bk(S∗,N) for all k ∈M . Letting S∗g = S∗ ∩Ng and noting that

k∗g = |S∗∩Ng|, the assortment S∗g includes the k∗g products that the assortment S∗ offers in product

class g. On the other hand, recalling that Ŝg = S light
g (k∗g) by the discussion at the beginning of this

section, the assortment Ŝg includes the k∗g products with the smallest preference weights in product

class g. Thus, for each i∈ S∗g , there exists a different j(i)∈ Ŝg such that vi ≥ vj(i). In other words,

we can map a product in S∗g to a product in Ŝg with a smaller preference weight and this mapping

is one-to-one. In this case, a simple lemma, given as Lemma F.1 in Appendix F, shows that we

have Bk(∪g
∗
max
g=g∗

min
S∗g ,N) ≤ Bk(∪g

∗
max
g=g∗

min
Ŝg,N) for all k ∈M . The proof of this lemma uses the fact

that vi
1+V (N−i)

in (1) satisfies vi
1+V (N−i)

= vi
1+V (N)−vi

≥ vj
1+V (N)−vj

=
vj

1+V (N−j)
whenever vi ≥ vj. Lastly,

by the discussion at the beginning of the proof of Theorem 5.1, we have Bk(Q,N)≤Bk(S,N) for

all S ⊆Q⊆N and k ∈M . In this case, since ∪g
∗
max
g=g∗

min
S∗g ⊆∪g∈ZS∗g = S∗ ⊆N , we obtain Bk(S∗,N)≤

Bk(∪g
∗
max
g=g∗

min
S∗g ,N)≤Bk(∪g

∗
max
g=g∗

min
Ŝg,N) =Bk(Ŝ,N), where the last equality is by (12).

Thus, by the proposition above, there exists an ideal light assortment Ŝ that satisfies the bounded

support and limited degradation properties in Part 1.
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6.2 Constructing the Candidate Assortments

We construct the collection of candidate assortments {At : t∈A} that satisfies the small and light

collection and approximation to ideal properties in Part 2. Considering the ideal light assortment

Ŝ defined as in (12), our approach is based on guessing two quantities. First, we guess a value of

η̂ such that η̂ ≤W (Ŝ) ≤ 2 η̂. Second, recalling that we set L = d log(n/ε)

log(1+ε)
e at the beginning of this

section, we guess the integer values of κ̂= {κ̂g : g ∈Z} such that

κ̂g ε
η̂

L
≤ W (Ŝ ∩Ng) < (κ̂g + 1) ε

η̂

L
∀g ∈Z. (13)

Shortly in this section, we argue that even if we do not know the ideal light assortment Ŝ, we can

come up with O((n/ε)
O(1/ε2)

) guesses for (η̂, κ̂) such that one of these guesses ends up being correct;

that is, satisfying η̂≤W (Ŝ)≤ 2 η̂ and (13). Before we make this argument, however, we proceed to

showing how we can use these guesses for (η̂, κ̂) to construct a collection of candidate assortments

{At : t ∈ A} that satisfies the small and light collection and approximation to ideal properties in

Part 2. Let {(η,κ) ∈ Θ} be the set of our guesses for (η̂, κ̂), so that |Θ| = O((n/ε)
O(1/ε2)

). We

construct one candidate assortment for each guess (η,κ)∈Θ. In particular, by the discussion at the

beginning of Section 5, the assortment S light
g (k) includes the k products with the smallest preference

weights in product class g. Letting k̃g(η,κg) = min{k= 0,1, . . . , |Ng| :W (S light
g (k))≥ κg ε ηL}, we

define the assortment S̃g(η,κg) = S light
g (k̃g(η,κg)), which corresponds to the smallest light assortment

in product class g with a total rounded weight of at least κg ε
η
L

. In our collection of candidate

assortments, the candidate assortment corresponding to the guess (η,κ)∈Θ is given by

S̃(η,κ) =
⋃
g∈Z

S̃g(η,κg), (14)

which is, by definition, light. Thus, since |Θ|=O((n/ε)
O(1/ε2)

), the collection {S̃(η,κ) : (η,κ)∈Θ}

has O((n/ε)
O(1/ε2)

) light assortments, so it satisfies the small and light collection property in Part 2.

In the next proposition, we show that the collection of assortments {S̃(η,κ) : (η,κ)∈Θ} satisfies

the approximation to ideal property in Part 2 as well.

Proposition 6.2 (Approximation to Ideal) Letting Ŝ be as in (12) and defining

Ĝ= {g ∈Z : Ŝ ∩Ng 6=∅}, there exists an assortment S̃ ∈ {S̃(η,κ) : (η,κ)∈Θ} such that

W (S̃ ∩Ng) ≤ W (Ŝ ∩Ng) ≤ W (S̃ ∩Ng) +
ε

|Ĝ|
W (Ŝ) ∀g ∈Z.

Proof: Let (η̂, κ̂) ∈ Θ be the correct guess in the sense that it satisfies η̂ ≤ W (Ŝ) ≤ 2 η̂ and

κ̂g ε
η̂
L
≤W (Ŝ ∩Ng)< (κ̂g + 1) ε η̂

L
for all g ∈Z. By our construction of the set of guesses, there exists
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such (η̂, κ̂)∈Θ. Since S̃(η̂, κ̂) =∪g∈ZS̃g(η̂, κ̂g) by (14), we have S̃(η̂, κ̂)∩Ng = S̃g(η̂, κ̂g). Noting that

Ŝ is a light assortment, Ŝ ∩Ng is a light assortment in product class g. Furthermore, we have

W (Ŝ ∩Ng) ≥ κ̂g ε η̂L , so the total rounded weight of Ŝ ∩Ng is at least κ̂g ε
η̂
L

. On the other hand,

by its definition, S̃g(η̂, κ̂g), is the smallest light assortment in product class g with a total rounded

weight of at least κ̂g ε
η̂
L

. Therefore, it follows that W (Ŝ ∩ Ng) ≥ W (S̃g(η̂, κ̂g)) ≥ κ̂g ε
η̂
L

. Lastly,

by (12), Ŝ ∩Ng can be nonempty only for g ∈ {g∗min, . . . , g
∗
max}. Since g∗max− g∗min =L− 1, there are

L elements in the set {g∗min, . . . , g
∗
max}, so |Ĝ| ≤L. In this case, noting that W (Ŝ∩Ng)< (κ̂g + 1) ε η̂

L

and W (Ŝ)≥ η̂ by our choice of (κ̂, η̂) at the beginning of the proof, we get

W (S̃g(η̂, κ̂g)) ≤ W (Ŝ ∩Ng) < (κ̂g + 1) ε
η̂

L

≤ W (S̃g(η̂, κ̂g)) + ε
η̂

L
≤ W (S̃g(η̂, κ̂g)) +

ε

|Ĝ|
W (Ŝ).

Letting S̃ = S̃(η̂, κ̂), by (14), we have S̃ ∩Ng = S̃g(η̂, κ̂g). Thus, by the chain of inequalities above,

the assortment S̃ satisfies the chain of inequalities in the proposition.

In the remainder of this section, we explain how we can come up with O((n/ε)
O(1/ε2)

) guesses

for (η̂, κ̂) such that one of these guesses satisfies η̂≤W (Ŝ)≤ 2 η̂, as well as (13).

Counting the Number of Guesses:

We guess the largest product class ĝ in which the assortment Ŝ offers a product. Since there are n

products, there are at most n nonempty product classes, so we have O(n) guesses for ĝ. Considering

the number of guesses for η̂, by the definition of Ng, we have wi = (1 + ε)g for all i ∈Ng. Since ĝ

is the largest product class in which the assortment Ŝ offers a product, we have wi = (1 + ε)ĝ for

some i ∈ Ŝ and wi ≤ (1 + ε)ĝ for all i ∈ Ŝ, which implies that (1 + ε)ĝ ≤W (Ŝ)≤ n (1 + ε)ĝ. In this

case, there exists some q= 0,1, . . . , d logn
log 2
e such that 2q (1 + ε)ĝ ≤W (Ŝ)≤ 2q+1 (1 + ε)ĝ. So, for each

guess of ĝ, our guess of η̂ has the form 2q (1 + ε)ĝ for q= 0,1, . . . , d logn
log 2
e. In this way, for each guess

of ĝ, we have O(logn) guesses for η̂ such that one of these guesses satisfies η̂≤W (Ŝ)≤ 2 η̂.

Considering the number of guesses for κ̂, by the construction in (12), the assortment Ŝ offers

products in at most L consecutive product classes. Thus, for each guess of ĝ, we can set κ̂g = 0

in (13) for all g 6= ĝ−L+ 1, . . . , ĝ. Furthermore, if our guess of (η̂, κ̂) is to satisfy W (Ŝ)≤ 2 η̂ and

κ̂g ε
η̂
L
≤W (Ŝ ∩Ng) for all g ∈Z, then we need to have ε η̂

L

∑
g∈Z κ̂g ≤

∑
g∈ZW (Ŝ ∩Ng) =W (Ŝ)≤ 2 η̂,

which implies that we need to have
∑

g∈Z κ̂g ≤ d
2L
ε
e. In this case, using the fact that we can set

κ̂g = 0 for all g 6= ĝ−L+ 1, . . . , ĝ, it follows that we need to have
∑ĝ

g=ĝ−L+1 κ̂g ≤ d
2L
ε
e. Therefore,

for each guess of ĝ, the number of guesses for κ̂ is upper bounded by the number of ways to divide

d 2L
ε
e items into L bins. Recall that the number of ways to divide d 2L

ε
e items into L bins is given
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by
(d 2Lε e+L−1

L

)
. Therefore, for each guess of ĝ, we conclude that we can upper bound the number

of guesses for κ̂ by using the chain of inequalities(
d 2L
ε
e+L− 1

L

)
(a)

≤ 2d
2L
ε e+L−1 ≤ 2

3L
ε

(b)

≤ 2
9
ε2

log(n/ε)
= 2log(n/ε)9/ε

2

=
(n
ε

)O(1/ε2)

,

here (a) uses the fact that
(
n
k

)
≤ 2n and (b) holds since L= d log(n/ε)

log(1+ε)
e ≤ d log(n/ε)

ε/2
e ≤ 3

ε
log(n/ε), where

we use the inequalities log(1 +x)≥ x/2 for x∈ [0,1] and log(n/ε)≥ 1 for n≥ 3.

For each guess of ĝ, we have O(logn) guesses for η̂ and (n/ε)
O(1/ε2)

guesses for κ̂. Since there are

O(n) guesses for ĝ, we end up with O((n/ε)
O(1/ε2)

logn) =O((n/ε)
O(1/ε2)

) guesses for (η̂, κ̂).

7. Prediction Performance with Endogenous Consideration Sets

We give computational experiments to understand how much the rank cutoffs improve the ability of

the multinomial logit model to predict customer purchases and to identify profitable assortments.

7.1 Experimental Setup

We generate purchase histories from a ground choice model that does not comply with the

multinomial logit model and test the ability of our choice model to predict the purchases in these

histories. The ground choice model is the non-parametric choice model. In this choice model, we

have C customer types. Customers of type ` are characterized by a preference list (j`(1), . . . , j`(n`)),

where n` is the number of products in the list and j`(k) is the product at position k. A customer of

type ` arrives with probability β`. She purchases her most preferred product that is available. If no

product in her preference list is available, then she leaves without a purchase. Thus, the parameters

of the ground choice model are the arrival probability β` and the preference list (j`(1), . . . , j`(n`))

for each customer type `. We generate instances of the ground choice model as follows.

We index the products such that product 1 has the highest quality and price, whereas product n

has the lowest quality and price. Customers of a particular type have a highest willingness to pay

and lowest quality threshold. Thus, the preference lists are of the form (i, i + 1, . . . , j), but we

introduce some idiosyncraticity. In particular, to generate the preference list of customers of type `,

we sample L` from the uniform distribution over {1, . . . , n} and U ` from the uniform distribution

over {L`, . . . , n}. Considering the preference list (L`,L` + 1, . . . ,U `), we drop each product with

probability 0.1, assuming that the customer ignores the product. After dropping, with probability

0.5, we randomly pick just one product in the list and flip its place with its successor to get the

preference list of customers of type `. With probability 0.5, we leave the list untouched.

Customers of each type arrive with equal probability of β` = 1/C. Throughout, we have n= 10

products and C = 100 customer types. Once we generate an instance of the ground choice model
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as above, we sample the purchase histories of τ customers making choices according to the ground

choice model. In particular, we capture a sampled purchase history by {(St, it) : t= 1, . . . , τ}, where

St is the assortment offered to customer t and it is the product purchased, if any, by customer t. To

come up with the assortment St, we include each product in the assortment with probability 0.5. We

sample the product it within the assortment St according to the ground choice model. We vary τ

to obtain different levels of data availability. We use these past purchase histories as the training

dataset. To use as the validation and testing datasets, we follow the same approach to generate

two other purchase histories, each including 1250 customers. The offered assortments, arriving

customers and their choices in the training, validation and testing datasets are all independent

draws. In particular, we do not bootstrap from one of the datasets to construct another one.

We use maximum likelihood to fit our multinomial logit model with rank cutoffs to the training

dataset; see, for example, Vulcano et al. (2012). The parameters of our choice model are the

preference weights (v1, . . . , vn) and the rank cutoff distribution (λ1, . . . , λm). We parameterize vi as

vi = eβi for βi ∈R. We use cross validation to choose the value of the maximum rank cutoff m. The

number of products is relatively small, so we compute the choice probabilities using (1). We use the

fmincon routine in Matlab without derivative information with multiple initial solutions to obtain

a local maximum of the log-likelihood function. We use RCO to refer to the fitted multinomial

logit model with rank cutoffs. As benchmark choice models, we fit a standard multinomial logit

model, a mixture of multinomial logit models, an attention and consideration model and a mixture

of attention and consideration models to the training dataset.

Multinomial logit variants are widely used in the literature; see Section 7.2 in Talluri and van

Ryzin (2004). The parameters of the standard multinomial logit model are (v1, . . . , vn), where vi

is the preference weight of product i. If we offer the assortment S of products, then a customer

chooses product i∈ S with probability vi/(1 +
∑

j∈S vj). In a mixture of multinomial logit models,

we have K customer types. An arriving customer is of type k with probability θk. A customer of

type k chooses according to the multinomial logit model with preference weights (v1k, . . . , vnk). The

parameters of the mixture are (θ1, . . . , θK) and {(v1k, . . . , vnk) : k = 1, . . . ,K}. We use maximum

likelihood to fit the two variants of the multinomial logit model, parameterizing vi as vi = eβi for

βi ∈R. We choose the value of K for the mixture by using cross validation. We use SML and MML,

respectively, to refer to the standard and mixture of multinomial logit models that we fit.

In the attention and consideration model, the customers have a fixed preference ranking for the

products. We index the products so that the preference ranking has the order 1, . . . , n. A customer

includes each product i in her consideration set independently with probability γi. Once she forms

her consideration set, the customer purchases the available product in her consideration set that
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has the highest ranking. If none of the products in her consideration set is available, then the

customer leaves without a purchase. The parameters of the attention and consideration model are

the consideration probabilities (γ1, . . . , γn), along with the preference ranking of the products. This

choice model is studied in Gallego and Li (2017). Jagabathula et al. (2020) also work with this

choice model, referring to it as the independent consideration set model.

In a mixture of attention and consideration models, we have K customer types. The preference

ranking for all customer types is the same. An arriving customer is of type k with probability θk. A

customer of type k chooses among the offered products according to the attention and consideration

model with consideration probabilities (γ1k, . . . , γnk). The mixture of attention and consideration

models is a variant of the general consider-then-choose model studied by Jagabathula et al. (2020),

where the authors also assume that there is a single preference ranking for all customers, but

customers of different types pick the products to consider according to a different probabilistic

structure. Jagabathula et al. (2020) give an integer program to fit variants of the attention and

consideration model by using maximum likelihood estimation. We refer to the standard and mixture

of attention and consideration models, respectively, as SAC and MAC. Considering our multinomial

logit model with rank cutoffs and the four benchmarks, we compare five choice models.

7.2 Comparing Out-of-Sample Log-Likelihoods

To compare the out-of-sample log-likelihoods of the fitted choice models, we generate an instance

of the ground choice model as discussed at the beginning of Section 7.1. Using the ground choice

model, we generate three training datasets by varying the number of customers in the purchase

history over τ ∈ {1000,1750,2500}. In this way, we obtain three levels of data availability when

fitting the five choice models. To each of the three training datasets, we fit RCO, SML, MML,

SAC and MAC by using maximum likelihood estimation. Using the ground choice model, we also

generate validation and testing datasets, each including 1250 customers. We use the validation

dataset to choose the value of m for RCO and the value of K for MML and MAC. We compute the

out-of-sample log-likelihoods of the testing dataset under the five fitted choice models. A larger out-

of-sample log-likelihood indicates that the choice model in question will do a better job of predicting

the purchases of the customers not in the training dataset.

In Table 3, we compare the out-of-sample log-likelihoods of the five fitted choice models. The top,

middle and bottom portions of the table correspond to different values for the number of customers

τ in the training dataset, yielding different levels of data availability to fit the choice models. We

replicated our computational experiments for 10 ground choice models that we randomly generated.

Each row in the table corresponds to a different ground choice model that we work with. In the
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τ = 1000

Grnd. Out-of-Sample Log-Likelihoods Perc. Gap with RCO
Ch. RCO SML MML SAC MAC SML MML SAC MAC
1 -2024.52 -2041.73 -2049.29 -2041.93 -2041.93 0.85 1.22 0.86 0.86
2 -2043.58 -2062.84 -2054.18 -2058.98 -2055.02 0.94 0.52 0.75 0.56
3 -2073.68 -2095.13 -2084.94 -2081.92 -2081.87 1.03 0.54 0.40 0.39
4 -2021.50 -2033.60 -2037.16 -2034.39 -2034.39 0.60 0.77 0.64 0.64
5 -2072.32 -2097.19 -2097.49 -2087.79 -2087.79 1.20 1.21 0.75 0.75
6 -2038.07 -2044.53 -2037.59 -2047.09 -2045.00 0.32 -0.02 0.44 0.34
7 -2117.68 -2134.45 -2136.35 -2126.15 -2131.86 0.79 0.88 0.40 0.67
8 -2059.85 -2067.13 -2066.66 -2060.40 -2069.75 0.35 0.33 0.03 0.48
9 -2056.47 -2072.01 -2073.23 -2072.59 -2070.40 0.76 0.82 0.78 0.68
10 -2111.71 -2132.01 -2121.54 -2127.90 -2135.61 0.96 0.47 0.77 1.13

Avg. 0.78 0.67 0.58 0.65

τ = 1750

Grnd. Out-of-Sample Log-Likelihoods Perc. Gap with RCO
Ch. RCO SML MML SAC MAC SML MML SAC MAC
1 -2018.65 -2035.55 -2021.40 -2026.34 -2021.02 0.84 0.14 0.38 0.12
2 -2031.15 -2051.42 -2033.46 -2047.10 -2038.65 1.00 0.11 0.79 0.37
3 -2069.24 -2090.22 -2081.48 -2086.80 -2077.63 1.01 0.59 0.85 0.41
4 -2016.42 -2027.42 -2031.36 -2034.67 -2027.62 0.55 0.74 0.91 0.56
5 -2066.12 -2090.87 -2076.15 -2084.51 -2082.76 1.20 0.49 0.89 0.81
6 -2036.11 -2042.28 -2024.59 -2039.57 -2033.36 0.30 -0.57 0.17 -0.13
7 -2106.98 -2125.46 -2109.03 -2120.47 -2126.67 0.88 0.10 0.64 0.93
8 -2050.78 -2061.83 -2058.04 -2051.70 -2054.44 0.54 0.35 0.04 0.18
9 -2053.21 -2067.84 -2066.09 -2072.09 -2074.07 0.71 0.63 0.92 1.02
10 -2102.75 -2122.98 -2096.79 -2119.15 -2107.93 0.96 -0.28 0.78 0.25

Avg. 0.80 0.23 0.64 0.45

τ = 2500

Grnd. Out-of-Sample Log-Likelihoods Perc. Gap with RCO
Ch. RCO SML MML SAC MAC SML MML SAC MAC
1 -2018.54 -2035.28 -2021.43 -2026.31 -2017.70 0.83 0.14 0.38 -0.04
2 -2031.27 -2051.87 -2032.35 -2043.61 -2034.63 1.01 0.05 0.61 0.17
3 -2065.05 -2086.22 -2063.80 -2081.81 -2065.91 1.03 -0.06 0.81 0.04
4 -2016.25 -2027.05 -2025.37 -2038.19 -2035.57 0.54 0.45 1.09 0.96
5 -2067.92 -2092.77 -2076.76 -2092.16 -2082.10 1.20 0.43 1.17 0.69
6 -2035.18 -2041.81 -2022.07 -2039.39 -2031.77 0.33 -0.64 0.21 -0.17
7 -2104.60 -2122.61 -2109.68 -2117.43 -2111.04 0.86 0.24 0.61 0.31
8 -2049.10 -2061.81 -2054.24 -2051.95 -2046.28 0.62 0.25 0.14 -0.14
9 -2050.94 -2064.82 -2058.89 -2069.26 -2069.67 0.68 0.39 0.89 0.91
10 -2099.23 -2117.59 -2097.13 -2118.68 -2100.61 0.87 -0.10 0.93 0.07

Avg. 0.80 0.11 0.68 0.28

Table 3 Comparison of the out-of-sample log-likelihoods of the fitted choice models.

first column of the table, we give the index of the ground choice model. The next five columns

show the out-of-sample log-likelihoods obtained by the five fitted choice models, whereas the last

four columns show the percent gap between the out-of-sample log-likelihoods of RCO and each of

the remaining four fitted choice models. In all of the tables that we give throughout this section,

we follow the convention that positive values for the percent gaps favor RCO.

The results in Table 3 indicate that RCO provides uniform improvements over SML and SAC

in terms of out-of-sample log-likelihoods. Intuitively speaking, we view RCO, SML and SAC as

parsimonious choice models, as they do not involve multiple customer types. It is encouraging that
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RCO consistently provides the best out-of-sample log-likelihoods among the parsimonious choice

models. The performance gaps between RCO and the other two choice models slightly increase

as we have more data availability in the training dataset. Comparing RCO with the two choice

models that involve multiple customer types, the out-of-sample log-likelihoods of RCO are larger

than those of MML and MAC for a large majority of the ground choice models. It is known that

MML can approximate any choice model based on random utility maximization arbitrarily well,

as long as the number of customer types in the mixture is large; see McFadden and Train (2000).

However, if one uses a small training dataset to fit MML with a large number of customer types,

then the large number of parameters in MML may result in overfitting to the training dataset and

MML may provide poor out-of-sample log-likelihoods. Aligned with this expectation, improvements

of RCO over the out-of-sample log-likelihoods of MML are larger when we have the smallest training

dataset with 1000 customers. As the number of customers in the training dataset increases, the

gap between the out-of-sample log-likelihoods gets smaller, but RCO maintains its edge over MML

for a majority of the ground choice models. Similar observations hold when we compare RCO

with MAC. We shortly demonstrate that these improvements in log-likelihoods translate into more

profitable assortments for RCO. Although RCO and MML are variants of the multinomial logit

model, it is encouraging that RCO can yield more profitable assortments.

When we fit RCO to the training dataset, the maximum rank cutoff of a customer comes out to

be four to five. Fitting RCO using maximum likelihood estimation takes about four to six minutes.

When we fit SAC and MAC with 1000 customers in the training dataset, cross validation chooses the

number of customer types for MAC as one in three of the 10 ground choice models, in which case, the

out-of-sample log-likelihoods of SAC and MAC end up being the same. When we have 1750 or 2500

customers in the training dataset, this behavior goes away and we end up choosing the number of

customer types for MAC larger than one. Similarly, the out-of-sample log-likelihoods of MAC may be

smaller than those of SAC when we have a small number of customers in the training dataset, which

is related to the potential overfitting issue for MAC discussed above when we have a small number

of customers in the training dataset. Lastly, to identify situations where RCO performs especially

well when compared with the benchmarks, we replicated our results under different approaches

for generating the ground choice model. We do not report these results in detail, but if the length

of the preference lists in the ground choice model is small, then the out-of-sample log-likelihoods

of RCO can be dramatically larger than those of SML and MML. Shorter preference lists in the

ground choice model translate into customers being more picky. While the rank cutoffs in RCO

allow us to capture picky customers, SML and MML do not necessarily have a similar capability.

On the other hand, there is an inherent ordering between the products in the ground choice model
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that we use, where product 1 is the most preferred and product n is the least preferred. Note that

SAC and MAC also work under the assumption that there is a fixed preference ranking for the

products. In contrast, if the preference lists in the ground choice model are random permutations

of the products that do not necessarily follow a fixed order, then the out-of-sample log-likelihoods

of RCO end up being dramatically larger than those of SAC and MAC.

7.3 Comparing Expected Revenue Performance

It turns out that the improvements in the out-of-sample log-likelihoods provided by RCO can

translate into significantly more profitable assortments. We use the following approach to compare

the ability of the fitted choice models to pick profitable assortments. Let φRCO
i (S) and φGR

i (S) be

the choice probabilities of product i within assortment S, respectively, under the fitted RCO and

ground choice models. Once we fit RCO to the training dataset, we generate 100 samples of product

revenues, denoted by {(r1k, . . . , rnk) : k = 1, . . . ,100}. Each product revenue is generated from the

uniform distribution over [1,10]. For each sample (r1k, . . . , rnk), we solve the problem SRCO
k =

arg maxS⊆N
∑

i∈N rik φ
RCO
i (S), which is the optimal assortment if the choices of the customers were

governed by the fitted RCO. The choices of the customers are actually governed by the ground choice

model, so the actual expected revenue from the assortment SRCO
k is RevRCO

k =
∑

i∈N rik φ
GR
i (SRCO

k ),

characterizing the revenue performance of RCO on the sample (r1k, . . . , rnk). We compute RevSML
k ,

RevMML
k , RevSAC

k and RevMAC
k similarly to characterize the revenue performance of the benchmarks

SML, MML, SAC and MAC on the sample (r1k, . . . , rnk).

In Table 4, we compare the expected revenues from the assortments picked by the five fitted

choice models. As earlier, the top, middle and bottom portions of the table correspond to different

values for the number of customers τ in the training dataset. The first column of the table gives

the index of the ground choice model. In the rest of the table, we have four blocks, each containing

three columns. The four blocks compare RCO with each of the four benchmarks SML, MML, SAC

and MAC. The first column in the first block gives the average percent gap between the expected

revenues obtained by RCO and SML, where the average is computed over the 100 product revenue

samples. Thus, this column gives the average of the data {100× RevRCO
k −RevSML

k

RevRCO
k

: k= 1, . . . ,100}. The

second and third columns in the first block give the number of samples for which we, respectively,

have RevRCO
k >RevSML

k and RevSML
k > RevRCO

k , giving the numbers of samples for which one fitted

choice model performs better than the other. The entries in these columns may not add up to 100,

since we may have RevRCO
k = RevSML

k for some revenue samples. The remaining three blocks compare

the expected revenues from the assortments picked by the fitted RCO with the expected revenues
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τ = 1000

Comp. with SML Comp. with MML Comp. with SAC Comp. with MAC
Grnd. Perc. RCO� SML� Perc. RCO� MML� Perc. RCO� SAC� Perc. RCO� MAC�
Ch. Gap SML RCO Gap MML RCO Gap SAC RCO Gap MAC RCO

1 8.33 77 10 6.14 82 10 5.86 70 28 5.86 70 28
2 8.09 78 8 6.00 72 12 3.10 70 29 2.83 64 36
3 7.96 80 11 4.09 67 21 4.04 71 28 3.49 65 34
4 7.73 74 15 7.83 82 12 4.44 71 28 4.44 71 28
5 6.66 72 22 5.76 78 17 6.17 80 19 6.17 80 19
6 6.84 66 28 5.49 69 26 5.47 76 23 5.16 69 30
7 4.98 62 33 3.61 66 33 3.34 63 36 4.65 72 28
8 9.26 77 14 4.59 71 18 4.87 67 32 1.01 60 40
9 6.44 73 22 6.17 74 25 4.57 68 32 3.22 62 38
10 5.10 63 31 2.12 53 39 2.98 56 42 1.76 60 39

Avg. 7.14 72 19 5.18 71 21 4.48 69 30 3.86 67 32

τ = 1750

Comp. with SML Comp. with MML Comp. with SAC Comp. with MAC
Grnd. Perc. RCO� SML� Perc. RCO� MML� Perc. RCO� SAC� Perc. RCO� MAC�
Ch. Gap SML RCO Gap MML RCO Gap SAC RCO Gap MAC RCO

1 7.99 68 20 2.88 66 22 2.36 59 38 -0.02 46 53
2 7.64 78 8 3.54 67 19 3.23 71 28 1.67 56 43
3 7.90 80 12 4.13 68 18 3.46 58 41 2.44 64 34
4 7.62 76 16 3.83 70 21 4.39 81 18 4.94 80 19
5 6.94 74 20 3.09 57 32 5.54 72 26 4.24 68 28
6 6.53 62 29 0.07 47 48 2.73 61 38 0.23 49 51
7 5.43 63 27 1.99 58 32 3.66 76 24 4.39 77 22
8 8.02 75 14 0.81 55 33 3.49 69 31 0.11 43 56
9 6.86 74 21 3.43 71 23 6.17 72 27 4.68 69 30
10 7.03 71 22 -0.45 39 52 3.34 63 35 2.92 64 34

Avg. 7.20 72 19 2.33 60 30 3.84 68 31 2.56 62 37

τ = 2500

Comp. with SML Comp. with MML Comp. with SAC Comp. with MAC
Grnd. Perc. RCO� SML� Perc. RCO� MML� Perc. RCO� SAC� Perc. RCO� MAC�
Ch. Gap SML RCO Gap MML RCO Gap SAC RCO Gap MAC RCO

1 8.10 73 21 1.98 66 29 2.45 61 34 0.14 49 51
2 8.26 82 9 2.55 62 23 4.24 78 21 3.26 67 30
3 6.77 74 15 1.29 45 35 3.13 54 46 1.19 47 50
4 7.56 78 15 5.02 73 21 5.17 78 20 4.36 78 21
5 6.93 74 20 2.54 63 30 4.79 76 23 1.36 56 44
6 6.55 64 28 0.22 45 45 3.06 65 33 1.51 57 43
7 5.56 66 23 2.65 66 23 4.09 77 23 2.55 70 30
8 7.58 73 17 0.78 53 35 4.12 72 27 0.07 48 52
9 6.70 73 22 1.69 58 35 3.56 72 28 3.90 74 25
10 7.06 72 20 0.61 49 41 3.72 65 35 1.74 61 38

Avg. 7.11 73 19 1.93 58 32 3.83 70 29 2.01 61 38

Table 4 Comparison of the expected revenues obtained by using the fitted choice models.

from the assortments picked by the fitted MML, SAC and MAC. The layout of the columns in these

three blocks is identical to that of the first block.

The results in Table 4 indicate that RCO provides significant improvements over SML and SAC

in terms of expected revenues. Over a total of 3000 product revenue samples, in 2172 samples,

the revenue performance of RCO is better than that of SML, whereas in 573 samples, the revenue

performance of SML is better than that of RCO. The product revenue samples for which the
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expected revenues obtained by RCO and SML match correspond to the case where the assortment

SRCO
k that RCO picks is revenue-ordered. Recall that the optimal assortment SSML

k under SML is

known to be revenue-ordered assortment. Therefore, when SRCO
k happens to be revenue-ordered,

there is a significant likelihood that we will have SRCO
k = SSML

k , but note that SRCO
k and SSML

k can also

be two different revenue-ordered assortments. In 2072 samples, the revenue performance of RCO is

better than that of SAC, whereas the situation is reversed in 893 samples. Comparing RCO with

the benchmarks that involve multiple customer types, in 1892 samples, the revenue performance

of RCO is better than that of MML, whereas in 830 samples, the revenue performance of MML

is better than that of RCO. As the number of customers τ in the training dataset increases, the

gap between the expected revenues obtained by RCO and MML gets smaller. As the number of

customers in the training dataset increases, MML can exploit the fact that it can approximate any

choice model that is based on random utility maximization. Nevertheless, even when we have 2500

customers in the training dataset, RCO can maintain its edge over MML. Similar observations hold

when we compare RCO with MAC. In 1896 samples, the revenue performance of RCO is better than

that of MAC, whereas the situation is reversed in 1074 samples.

The results in Tables 3 and 4 are based on one purchase history. To ensure that our results are

robust, we replicated them for 10 different purchase histories sampled from each of the 10 ground

choice models. We work with three levels of data availability, so we end up with 300 ground choice

model-purchase history-data availability combinations. To provide high level statistics, over all of

the 300 combinations, RCO improves the out-of-sample log-likelihoods of SML, MML, SAC and

MAC, respectively, by 0.81%, 0.27%, 0.61% and 0.34% on average. Over the 300 combinations,

in 298, 226, 296 and 233 combinations, the out-of-sample log-likelihoods of RCO are, respectively,

better than those of SML, MML, SAC and MAC. Moving to the expected revenue performance, RCO

improves the expected revenues obtained by SML, MML, SAC and MAC, respectively, by 7.35%,

3.04%, 3.79% and 2.44% on average. In 73%, 62%, 68% and 63% of the product revenue samples,

the expected revenue performance of RCO is, respectively, better than that of SML, MML, SAC and

MAC. Overall, our results indicate that adding the rank cutoffs to the multinomial logit model can

noticeably enrich the behavior of the multinomial logit model. Although MML can approximate any

choice model that is based on random utility maximization, RCO remains, at minimum, competitive

to MML, especially under low to moderate amounts of data availability.

We also compared RCO with the four benchmark choice models using a dataset that includes

the preferences of 5000 diners for 10 sushi varieties; see Kamishima (2018). We report the results

of these computational experiments in Appendix G. In Appendix H, we test the performance of

our PTAS in Section 5 by comparing the expected revenues from the assortments obtained by the

PTAS with an upper bound on the optimal expected revenues.



34 Bai, Feldman, Topaloglu, Wagner; Multinomial Logit Model with Rank Cutoffs; August 31, 2023

8. Conclusions

Our work opens up several areas of investigation. First, we gave a PTAS for the assortment

optimization problem, but our complexity result does not rule out the existence of a

fully polynomial-time approximation scheme. Either establishing that a fully polynomial-time

approximation scheme is not possible or giving such a scheme is one research path. Second, our

PTAS naturally handles a cardinality constraint that limits the number of offered products. We

generate the candidate assortments in the same way, but focus on those that satisfy the cardinality

constraint. However, our PTAS does not handle other types of constraints, including a knapsack

constraint, where each product consumes a certain amount of space and we have a limit on the

total space consumption of the offered products. Third, an interesting line of investigation is to

extend our work to a mixture of multinomial logit models, where there are multiple customer

types, each differing not only in their rank cutoff but also in the preference weight they attach to a

product. Under a mixture of multinomial logit models, even if all customers have a rank cutoff of

n, it is NP-hard to approximate the assortment optimization problem within a factor that is better

than 1
n1−ε for any ε > 0; see Desir and Goyal (2014). On the other hand, choosing, for example,

ε = 1
2

in our PTAS, we can obtain a 1
2
-approximation for our assortment optimization problem

in polynomial time. Thus, the extension from all customer types assigning the same preference

weight to a product to different customer types assigning different preference weights to a product

dramatically changes the complexity of the problem. Giving a fully polynomial-time approximation

scheme, dealing with knapsack constraints and incorporating multiple customer types that attach

different preference weights to a product appear to require new lines of attack. Lastly, incorporating

rank cutoffs or other means to enhance the flexibility of choice models is a rich research area,

irrespective of whether the starting point is the multinomial logit or any other choice model.
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Online Appendix for “Assortment Optimization under the Multinomial

Logit Model with Utility-Based Rank Cutoffs”

Appendix A: Independence from Top Ranked Choices

We give a proof of the independence from top ranked choices property. Beggs et al. (1981) give a

result that implies the same property, but they do not state the property in the form we use.

Lemma A.1 Letting {X1, . . . ,Xq, Y1, . . . , Yp} be independent Gumbel random variables with the

same scale parameter of one, we have

P
{
X1 ≥ . . .≥Xq

∣∣Y1 ≥ . . .≥ Yp ≥max{X1, . . . ,Xq}
}

= P
{
X1 ≥ . . .≥Xq

}
.

Proof: Let Xi have the location-scale parameters (µi,1) and Yi have the location-scale parameters

(γi,1). If {Z1, . . . ,Zn} are independent Gumbel random variables with Zi having the location-scale

parameter (ζi,1), then we have P{Z1 ≥ . . .≥Zn}= eµ1∑n
i=1 e

µi
eµ2∑n
i=2 e

µi
. . . eµn−1∑n

i=n−1 e
µi

; see, for example,

Section 3.1 in Jagabathula and Vulcano (2018). In this case, using the fact that max{X1, . . . ,Xq}

has the Gumbel distribution with location-scale parameters (log
∑q

i=1 e
µi ,1) by the maximum of

Gumbel random variables property in Section 3, we obtain the chain of equalities

P
{
X1 ≥ . . .≥Xq |Y1 ≥ . . .≥ Yp ≥max{X1, . . . ,Xq}} =

P
{
Y1 ≥ . . .≥ Yp ≥X1 ≥ . . .≥Xq}

P
{
Y1 ≥ . . .≥ Yp ≥max{X1, . . . ,Xq}

}
(a)
=

eγ1∑p
i=1 e

γi+
∑q
i=1 e

µi

eγ2∑p
i=2 e

γi+
∑q
i=1 e

µi
. . . eγp

eγp+
∑q
i=1 e

µi

eµ1∑q
i=1 e

µi

eµ2∑q
i=2 e

µi
. . . e

µq−1∑q
i=q−1 e

µi

eγ1∑p
i=1 e

γi+
∑q
i=1 e

µi

eγ2∑p
i=2 e

γi+
∑q
i=1 e

µi
. . . eγp

eγp+
∑q
i=1 e

µi

=
eµ1∑q

i=1 e
µi

eµ2∑q

i=2 e
µi
. . .

eµq−1∑q

i=q−1 e
µi

(b)
= P

{
X1 ≥ . . .≥Xq

}
,

where (a) and (b) use the identity at the beginning of the proof and noting that max{X1, . . . ,Xq}

is Gumbel with location-scale parameters (log
∑q

i=1 e
µi ,1) and independent of {Y1, . . . , Yp}.

Appendix B: Computational Complexity

We give a proof for Theorem 4.1. The proof uses a reduction from the partition problem. Using

Q+ to denote the set of positive rationals, the partition problem is defined as follows.

Partition Problem: Given a set of items N = {1, . . . , n}, each item i having weight wi ∈Q+,

does there exist a subset of items S such that
∑

i∈S wi = 1
2

∑
i∈N wi?

Proof of Theorem 4.1:

We use a reduction from the partition problem. Consider an instance of the partition problem

with the set of items N = {1, . . . , n}, where the weight of item i is wi ∈ Q+. Scaling the weight



ec2 e-companion to Multinomial Logit Model with Rank Cutoffs; August 31, 2023

of each item by the same amount does not change the answer to the partition problem, so we

normalize the weights so that
∑

i∈N wi = 1. Given the particular instance of the partition problem,

we construct an instance of the assortment feasibility problem as follows. The set of products is

N ∪{n+1}. Letting Θ =
∑

i∈N
wi

1+wi
< 1, for i= 1, . . . , n, we set the preference weight of product i as

vi = 2
1−Θ

wi
1+wi

. We set vn+1 = 1. For i= 1, . . . , n, we set the revenue of product i as ri = 1−Θ
2

(1+wi).

We set rn+1 = 1. Since (1 − Θ)(1 + wi) < (1 − wi
1+wi

)(1 + wi) = 1, we have ri <
1
2

for all i ∈ N ,

so product n + 1 has the largest revenue. All customers have rank cutoff of 2, so m = 2 and

(λ1, λ2) = (0,1). Lastly, we set the expected revenue threshold as K = 9(1−Θ)

8
. Since product n+ 1

has the largest revenue, offering product n+1 improves the expected revenue of any assortment. We

establish this fact in Lemma B.1 shortly in this section. Thus, the assortment feasibility problem

asks which of the remaining products in N = {1, . . . , n} to offer to obtain an expected revenue of
9(1−Θ)

8
or more. By (7), if we offer the subset of products S ⊆N , then the expected revenue is

λ2

1 +V (N) + vn+1

×W (S ∪{n+ 1})×B2(S ∪{n+ 1},N ∪{n+ 1})

=
1

1 +V (N) + vn+1

(∑
i∈S

ri vi + rn+1 vn+1

)(
1 +

∑
i∈N\S

vi
1 +V (N−i) + vn+1

)
,

where the equality uses the the definition of Bk(S,N) in (1) along with noting that product n+ 1

is offered, B1(·, ·) = 1 and (N ∪{n+ 1}) \ (S ∪{n+ 1}) =N \S.

We show that there exists a subset of products S ⊆N with expected revenue 9(1−Θ)

8
if and only

if there exists a subset S ⊆N with
∑

i∈S wi = 1
2

∑
i∈N wi = 1

2
. Noting the preference weights and

revenues of the products, we have 1+V (N)+vn+1 = 2+ 2
1−Θ

∑
i∈N

wi
1+wi

= 2+ 2 Θ
1−Θ

= 2
1−Θ

and ri vi =

wi. Furthermore, we have 1+V (N−i)+vn+1 = 1 +V (N) + vn+1− vi = 2
1−Θ
− 2

1−Θ
wi

1+wi
= 2

1−Θ
1

1+wi
, so

we get vi
1+V (N−i)+vn+1

=wi. Using the last three identities in the equality above, since
∑

i∈N wi = 1,

the expected revenue from the subset of products S ⊆N is

1

1 +V (N) + vn+1

(∑
i∈S

ri vi + rn+1 vn+1

)(
1 +

∑
i∈N\S

vi
1 +V (N−i) + vn+1

)

=
1−Θ

2

(
1 +

∑
i∈S

wi

)(
1 +

∑
i∈N\S

wi

)
=

1−Θ

2

(
1 +

∑
i∈S

wi

)(
2−

∑
i∈S

wi

)
.

Thus, there exists a subset S ⊆N with expected revenue 9(1−Θ)

8
if and only if there exists a subset

S ⊆N such that (1 +
∑

i∈S wi) (2−
∑

i∈S wi)≥
9
4
.

The maximum of g(x) = (1 +x)(2−x) is at x= 1
2

with g( 1
2
) = 9

4
. So, there exists a subset S ⊆N

with expected revenue 9(1−Θ)

8
if and only if there exists a subset S ⊆N with

∑
i∈S wi = 1

2
.

In the next lemma, we show that adding the product with the largest revenue to any assortment

increases the expected revenue under our choice model.
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Lemma B.1 For any product `∈N and assortment S ⊆N−`, if r` ≥ ri for all i∈ S, then we have∑
i∈S∪{`} ri φi(S ∪{`})≥

∑
i∈S ri φi(S).

Proof: In Lemma B.2 that we give next in this section, we show that adding a product to any

assortment decreases the purchase probability of any product already in the assortment, as well

as the no-purchase probability under our choice model. In other words, using φ0(S) to denote the

probability that a customer does not make a purchase when we offer the assortment S, for any

j ∈N and S ⊆N−j, we have φi(S ∪{j})≤ φi(S) for all i∈ S and φ0(S ∪{j})≤ φ0(S). In this case,

using the fact that φ`(S ∪{`}) = 1−φ0(S ∪{`})−
∑

i∈S φi(S ∪{`}), we get∑
i∈S∪{`}

ri φi(S ∪{`}) = r`

[
1−φ0(S ∪{`})−

∑
i∈S

φi(S ∪{`})
]

+
∑
i∈S

ri φi(S ∪{`})

= r`

[
1−φ0(S ∪{`})

]
+
∑
i∈S

(ri− r`)φi(S ∪{`})

(a)

≥ r`

[
1−φ0(S)

]
+
∑
i∈S

(ri− r`)φi(S)
(b)
=
∑
i∈S

ri φi(S),

where (a) follows from Lemma B.2 as well as the fact that r` ≥ ri for all i ∈ S, whereas (b) holds

because we have φ0(S) +
∑

i∈S φi(S) = 1.

In the next lemma, we show that adding a product to any assortment decreases the purchase

probability of any product already in the assortment, as well as the no-purchase probability.

Lemma B.2 Letting πk0 (S) = 1 −
∑

i∈S π
k
i (S), for any j ∈ N , S ⊆ N−j and k ∈ M , we have

πki (S ∪{j})≤ πki (S) for all i∈ S and πk0 (S ∪{j})≤ πk0 (S).

Proof: We use induction over the rank cutoff to show that Bk(S∪{j},N)≤Bk(S,N) for all j ∈N ,

S ⊆N−j and k ∈M . Since B1(·, ·) = 1, the result holds for k = 1. Assuming that the result holds

for rank cutoff of k − 1, we show that the result holds for rank cutoff of k. By the definition of

Bk(S,N) in (1), for any j ∈N and S ⊆N−j, we have

Bk(S ∪{j},N) = 1 +
∑

i∈N\(S∪{j})

vi
1 +V (N−i)

Bk−1(S ∪{j},N−i)

(a)

≤ 1 +
∑

i∈N\(S∪{j})

vi
1 +V (N−i)

Bk−1(S,N−i) ≤ 1 +
∑
i∈N\S

vi
1 +V (N−i)

Bk−1(S,N−i) = Bk(S,N),

where (a) holds because if we have S ⊆ N−j and i ∈ N \ (S ∪ {j}), then we also have

S ⊆N−i \ {j}, in which case, using the induction assumption with the set of products N−i,

we have the inequality Bk−1(S ∪{j},N−i)≤Bk−1(S,N−i). The chain of inequalities above

completes the induction argument. In this case, by Theorem 3.1, we obtain πki (S ∪ {j}) =



ec4 e-companion to Multinomial Logit Model with Rank Cutoffs; August 31, 2023

vi
1+V (N)

Bk(S ∪{j},N)≤ vi
1+V (N)

Bk(S,N) = πki (S), which is the first inequality in the lemma. Next,

we focus on the second inequality in the lemma. We use induction over the rank cutoff to show that

V (S ∪{j})Bk(S ∪{j},N) ≥ V (S)Bk(S,N) for all j ∈ N , S ⊆ N−j and k ∈M . Since B1(·, ·) = 1

and V (S ∪ {j})≥ V (S), the result holds for k = 1. Assuming that the result holds for rank cutoff

of k− 1, we show that the result holds for rank cutoff of k. A simple lemma, which we give later

in the paper in Lemma C.1, shows that 1
1+V (N)

Bk(S,N)≤ 1
1+V (S)

for any S ⊆N . In this case, by

the definition of Bk(S,N) in (1), for any j ∈N and S ⊆N−j, we have

V (S ∪{j})Bk(S ∪{j},N) = V (S ∪{j}) +
∑

i∈N\(S∪{j})

vi
1 +V (N−i)

V (S ∪{j})Bk−1(S ∪{j},N−i)

(b)

≥ V (S ∪{j}) +
∑

i∈N\(S∪{j})

vi
1 +V (N−i)

V (S)Bk−1(S,N−i)

= V (S ∪{j}) +
∑
i∈N\S

vi
1 +V (N−i)

V (S)Bk−1(S,N−i)−
vj

1 +V (N−j)
V (S)Bk−1(S,N−j)

(c)

≥ V (S ∪{j}) +
∑
i∈N\S

vi
1 +V (N−i)

V (S)Bk−1(S,N−i)− vj
V (S)

1 +V (S)

(d)

≥ V (S) +
∑
i∈N\S

vi
1 +V (N−i)

V (S)Bk−1(S,N−i)

(e)
= V (S)Bk(S,N),

where (b) is by the induction assumption, (c) uses the fact that 1
1+V (N−j)

Bk−1(S,N−j)≤ 1
1+V (S)

by

Lemma C.1, (d) holds by noting that V (S ∪ {j}) = V (S) + vj and (e) follows from (1). The chain

of inequalities above completes the induction argument.

By Theorem 3.1, we have πk0 (S) = 1−
∑

i∈S π
k
i (S) = 1−

∑
i∈S vi

1+V (N)
Bk(S,N) = 1− V (S)

1+V (N)
Bk(S,N),

so noting the chain of inequalities above, the second equality in the lemma holds because we have

πk0 (S ∪{j}) = 1− V (S∪{j})
1+V (N)

Bk(S ∪{j},N)≤ 1− V (S)

1+V (N)
Bk(S,N) = πk0 (S).

The choice probability of product i is φi(S) =
∑

k∈M λk πki (S), so φ0(S) = 1 −
∑

i∈S φi(S) =∑
k∈M λk−

∑
k∈M

∑
i∈S λ

k πki (S) =
∑

k∈M λk (1−
∑

i∈S π
k
i (S)) =

∑
k∈M λk πk0 (S). Thus, Lemma B.2

yields φi(S ∪{j})≤ φi(S) and φ0(S ∪{j})≤ φ0(S) for all j ∈N , S ⊆N−j and i∈ S.

Appendix C: Impact of Rank Cutoffs

In this section, we give a proof for Theorem 4.2. We will use two preliminary lemmas in the proof. In

the next lemma, we start by giving an upper bound on Bk(S,N) that we use to compute our choice

probabilities. Recall that Bk(S,N) is computed through the recursion in (1).
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Lemma C.1 For any rank cutoff k ∈M and assortment S ⊆ N , letting Bk(S,N) be computed

through the recursion in (1), we have

1

1 +V (N)
Bk(S,N) ≤ 1

1 +V (S)
. (15)

Proof: We use induction over the rank cutoff to show that the inequality in (15) holds for any

set of products N , rank cutoff k ∈M and assortment S ⊆ N . For k = 1, we have B1(S,N) = 1

by the boundary condition in (1), in which case, noting that S ⊆N , we obtain 1
1+V (N)

B1(S,N) =

1
1+V (N)

≤ 1
1+V (S)

. Therefore, the result holds for k = 1. Assuming that the the inequality in (15)

holds for rank cutoff of k−1, we show that the inequality in (15) holds for rank cutoff of k as well.

For S ⊆N , for any i ∈N \S, we have S ⊆N−i. In this case, using the induction assumption with

the set of products N−i, we have 1
1+V (N−i)

Bk−1(S,N−i) ≤ 1
1+V (S)

for each i ∈N \ S. Therefore,

using the definition of Bk(S,N) in (1), we get the chain of inequalities

Bk(S,N) = 1 +
∑
i∈N\S

vi
1 +V (N−i)

Bk−1(S,N−i)

≤ 1 +
∑
i∈N\S

vi
1 +V (S)

= 1 +
V (N)−V (S)

1 +V (S)
=

1 +V (N)

1 +V (S)
.

Arranging the terms in the chain of inequalities above yields 1
1+V (N)

Bk(S,N) ≤ 1
1+V (S)

, so the

result holds for rank cutoff of k as well.

Given that the set of products is N and we offer the assortment S, let Rk(S,N) be the revenue

from a customer with rank cutoff k. Note that Rk(S,N) is a random variable.

In the next lemma, we focus on computing the expected revenue from a customer with rank

cutoff k conditional on the top product with the largest utility.

Lemma C.2 For any set of products N , rank cutoff k ∈M and assortment S ⊆N , the revenue

from a customer with rank cutoff k satisfies

E
{
Rk(S,N)

∣∣∣Ui ≥U0 ∨ max
j∈N−i

Uj

}
=

{
ri if i∈ S
E{Rk−1(S,N−i)} if i 6∈ S.

(16)

Proof: Given Ui ≥U0∨maxj∈N−i Uj, product i occupies the top spot. Thus, if we have i∈ S, then a

customer with rank cutoff k purchases product i, yielding E{Rk(S,N) |Ui ≥U0∨maxj∈N−i Uj}= ri.

Indeed, a customer with any rank cutoff would purchase product i as long as the rank cutoff is

non-zero, so the result holds for all i ∈ S. On the other hand, if we have i 6∈ S, then product i

is not available, but given Ui ≥ U0 ∨maxj∈N−i Uj, it occupies the top spot. Thus, if we offer the

assortment S, then a customer with rank cutoff k does not purchase the product in the top spot,
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so we are left with k − 1 spots for the remaining products N−i and the no-purchase option. By

the second property of the Gumbel random variables in Section 3, conditional on the fact that

product i occupies the top spot, the choice process of the customer among the remaining products

N−i and no-purchase option is identical to the unconditional choice process, so the probability

that the customer chooses some product j ∈ S is the identical to the probability that a customer

with rank cutoff k − 1 chooses product j when set of all products is N−i, in which case, we get

E{Rk(S,N) |Ui ≥U0 ∨maxj∈N−i Uj}=E{Rk−1(S,N−i)}, so the result holds for all i 6∈ S.

We make two observations. First, noting the definition of Rk(S,N), if we offer the assortment

S, then the expected revenue from a customer is
∑

k∈M λkE{Rk(S,N)}. Second, by Theorem 3.1,

given that the set of products is N and we offer the assortment S, a customer with rank cutoff k

purchases product i with probability vi
1+V (N)

Bk(S,N), in which case, the expected revenue from

a customer with rank cutoff k is
∑
i∈S ri vi

1+V (N)
Bk(S,N). By the definition of Rk(S,N), if we offer the

assortment S, then the expected revenue from a customer with rank cutoff k is also given by

E{Rk(S,N)}. Therefore, we have
∑
i∈S ri vi

1+V (N)
Bk(S,N) =E{Rk(S,N)}.

We proceed to giving a proof for Theorem 4.2. In the proof, we assume that we choose the

optimal solutions to problems (7) and (8) as those with the largest cardinality.

Proof of Theorem 4.2:

Letting S+i = S ∪ {i}, we use induction over the rank cutoff to show that E{Rk(S+`,N)} ≥

E{Rk(S,N)} for any set of products N , S ⊆N , ` ∈ S̃ \ S and k ∈M . In this case, if there exists

some ` ∈ S̃ with ` 6∈ S∗, then
∑

k∈M λkE{Rk(S∗+`,N)} ≥
∑

k∈M λkE{Rk(S∗,N)}, contradicting

the fact that S∗ is an optimal solution to problem (7) with the largest cardinality. For k= 1,

since B1(·, ·) = 1, the discussion right before the theorem yields E{R1(S,N)} =
∑
q∈S rq vq

1+V (N)
≤

r` v`+
∑
q∈S rq vq

1+V (N)
= E{R1(S+`,N)}, so the result holds for k= 1. Assuming that the result holds for

rank cutoff of k− 1, we show that the result holds for rank cutoff of k.

Let product i be the one that provides the largest utility among all utilities. That is, we

have Ui ≥ U0 ∨maxj∈N−i Uj. For notational brevity, given that the set of products is N and we

offer the assortment S, let R
k

i (S,N) be the expected revenue from a customer with rank cutoff

k, conditional on the fact that product i provides the largest utility. In other words, we have

R
k

i (S,N) = E{Rk(S,N)
∣∣Ui ≥ U0 ∨maxj∈N−i Uj}, which corresponds to the left side of (16). By

the tower property of conditional expectations, we have E{Rk

i (S,N)}=E{Rk(S,N)}. We consider

three possibilities for product i to show that R
k

i (S+`,N)≥Rk

i (S,N) for each i∈N .

First, consider the case i∈ S. Thus, we have i∈ S and i∈ S+`, in which case, by (16), R
k

i (S,N) =

ri =R
k

i (S+`,N). Second, consider the case i 6∈ S and i 6= `. Therefore, we have i 6∈ S and i 6∈ S+`,
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so by (16), we get R
k

i (S,N) = E{Rk−1(S,N−i)} ≤ E{Rk−1(S+`,N−i)} = R
k

i (S+`,N), where the

inequality uses the induction assumption with the set of products N−i. Third, consider the case

i 6∈ S and i= `. Thus, we have i 6∈ S but i∈ S+`. Since i∈ S+`, by (16), we get R
k

i (S+`,N) = ri = r`.

A well-known result for assortment optimization under the standard multinomial logit model shows

that the products with revenues exceeding the optimal expected revenue are included in the optimal

assortment. For completeness, we give this result in Lemma C.3 shortly in this section. In this case,

recalling that S̃ is the optimal assortment to problem (8), which is the assortment optimization

problem under the standard multinomial logit model, we have r` ≥
∑
q∈S̃ rq vq

1+V (S̃)
for all `∈ S̃. Therefore,

since ` ∈ S̃ \ S, we get R
k

i (S+`,N) = r` ≥
∑
q∈S̃ rq vq

1+V (S̃)
≥

∑
q∈S rq vq
1+V (S)

, where the last inequality is by

the fact that S̃ is an optimal solution to problem (8). Furthermore, since i 6∈ S, by (16), we have

R
k

i (S,N) = E{Rk−1(S,N−i)}, but by the discussion right before the theorem, the last expectation

is E{Rk−1(S,N−i)}=
∑
q∈S rq vq

1+V (N−i)
Bk−1(S,N−i). Thus, we get

R
k

i (S,N) = E{Rk−1(S,N−i)} =

∑
q∈S rq vq

1 +V (N−i)
Bk−1(S,N−i) ≤

∑
q∈S rq vq

1 +V (S)
,

where the last inequality follows by Lemma C.1. Noting that R
k

i (S+`,N) ≥
∑
q∈S rq vq
1+V (S)

, we get

R
k

i (S,N)≤Rk

i (S+`,N). Collecting all three cases yields R
k

i (S,N)≤Rk

i (S+`,N).

In this case, we get E{Rk(S,N)}= E{Rk

i (S,N)} ≤ E{Rk

i (S+`,N)}= E{Rk(S+`,N)}, where the

two equalities use the tower property, so the result holds for rank cutoff of k.

In the next lemma, we give a property of an optimal solution to the assortment optimization

problem under the standard multinomial logit model.

Lemma C.3 Letting S̃ be an optimal solution to the assortment optimization problem in (8), for

all `∈ S̃, we have

r` ≥
∑

i∈S̃ ri vi

1 +
∑

i∈S̃ vi
.

Proof: Let Z̃ be the optimal objective value of problem (8), so we have Z̃ =
∑
i∈S̃ ri vi

1+
∑
i∈S̃ vi

. Arranging

the terms in the last equality, we obtain Z̃ =
∑

i∈S̃(ri− Z̃)vi. To get a contradiction, assume that

there exists `∈ S̃ such that r` < Z̃. In this case, we obtain Z̃ =
∑

i∈S̃(ri− Z̃)vi <
∑

i∈S̃\{`}(ri− Z̃)vi,

yielding the inequality Z̃ <
∑

i∈S̃\{`}(ri− Z̃)vi. Arranging the terms in this inequality once more,

we get Z̃ <
∑
i∈S̃\{`} ri vi

1+
∑
i∈S̃\{`} vi

. Thus, the solution S̃ \{`} provides an objective value for problem (8) that

exceeds the optimal objective value for this problem, which is a contradiction.
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Appendix D: Performance of Revenue-Ordered Assortments

We show that if m= 2, so that the rank cutoff of a customer does not exceed two, then the best

revenue-ordered assortment provides a 1
2
-approximation for the assortment optimization problem

under our multinomial logit model with rank cutoffs. Furthermore, we give a problem instance

to demonstrate that this bound is tight. In particular, the ratio between the expected revenue

from the best revenue-ordered assortment and the optimal expected revenue is arbitrarily close

to 1
2

for this problem instance. However, we are not able to show that if m≥ 3, so that the rank

cutoff of a customer can exceed two, then the best-revenue ordered assortment still provides a

1
2
-approximation. We leave the question of characterizing the performance of best revenue-ordered

assortment for larger rank cutoffs as an open problem. Throughout this section, we focus on the

case with m= 2. Using the fact that B1(·, ·) = 1, by (1), we get B2(S,N) = 1 +
∑

i∈N\S
vi

1+V (N−i)
.

Thus, letting Θ(S) =
∑

i∈S
vi

1+V (N−i)
for notational brevity, we have B2(S,N) = 1 + Θ(N \ S). In

this case, dropping the multiplicative constant 1
1+V (N)

that does not change the optimal solution

to problem (7), letting µ= λ2 for notational brevity and noting that λ1 +λ2 = 1, problem (7) with

m= 2 can equivalently be written as

max
S⊆N

{
W (S)

[
λ1 +λ2

{
1 + Θ(N \S)

}]}
= max

S⊆N

{
W (S)

[
1 +µΘ(N \S)

]}
. (17)

We use Rev(S) to denote the objective function of problem (17). Letting S∗ be an optimal solution

to problem (17), define the assortment S = {i∈N : ri ≥ 1
2 (1+V (N))

Rev(S∗)}.

The assortment S is revenue-ordered, including all products with revenues exceeding

1
2 (1+V (N))

Rev(S∗). In the next theorem, we show that S is a 1
2
-approximate solution to (17).

Theorem D.1 Letting S∗ be an optimal solution to problem (17) and defining the assortment

S = {i∈N : ri ≥ 1
2 (1+V (N))

Rev(S∗)}, we have

Rev(S)≥ 1

2
Rev(S∗).

Proof: Let S∗D = S∗ \ S, SD = S \ S∗ and SU = S∗ ∪ S. Note that S ∪ S∗D = SU = S∗ ∪ SD, so

S = (S∗ ∪SD) \S∗D, which implies that W (S) =W (S∗) +W (SD)−W (S∗D). Thus, we have

Rev(S) = W (S)
[
1 +µΘ(N \S)

]
= W (S∗)

[
1 +µΘ(N \S)

]
+
[
W (SD)−W (S∗D)

] [
1 +µΘ(N \S)

]
. (18)

By the definitions of S∗D and SD, we have (N \S)∪SD =N \(S∗∩S) = (N \S∗)∪S∗D, in which case,

we have N \S = ((N \S∗)∪S∗D) \SD. Therefore, we get Θ(N \S) = Θ(N \S∗) + Θ(S∗D)−Θ(SD).
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Furthermore, by the definition of Rev(S∗), we have W (S∗) = 1
1+µΘ(N\S∗) Rev(S∗). Using the last

two equalities, we express the right side of (18) equivalently as

1 +µΘ(N \S∗) +µΘ(S∗D)−µΘ(SD)

1 +µΘ(N \S∗)
Rev(S∗) +

[
W (SD)−W (S∗D)

] [
1 +µΘ(N \S)

]
= Rev(S∗) +

µΘ(S∗D)−µΘ(SD)

1 +µΘ(N \S∗)
Rev(S∗) +

[
W (SD)−W (S∗D)

] [
1 +µΘ(N \S)

]
(a)

≥ Rev(S∗)+
µΘ(S∗D)−µΘ(SD)

1 +µΘ(N \S∗)
Rev(S∗) +

Rev(S∗)

2 (1 +V (N))

[
V (SD)−V (S∗D)

] [
1 +µΘ(N \S)

]
= Rev(S∗)

[
1+

µΘ(S∗D)

1 +µΘ(N \S∗)
− µΘ(SD)

1 +µΘ(N \S∗)
+

[
V (SD)−V (S∗D)

] [
1 +µΘ(N \S)

]
2(1 +V (N))

]
, (19)

where (a) holds because noting that we have ri ≥ 1
2 (1+V (N))

Rev(S∗) for all i ∈ S and SD ⊆ S,

we obtain W (SD) =
∑

i∈SD
ri vi ≥ 1

2 (1+V (N))
Rev(S∗)

∑
i∈SD

vi = 1
2 (1+V (N))

Rev(S∗)V (SD), as well

as we have ri <
1

2 (1+V (N))
Rev(S∗) for all i ∈ N \ S and S∗D = S∗ \ S ⊆ N \ S, so we obtain

W (S∗D) =
∑

i∈S∗
D
ri vi ≤ 1

2 (1+V (N))
Rev(S∗)

∑
i∈S∗

D
vi = 1

2 (1+V (N))
Rev(S∗)V (S∗D). The two equalities

above follow by arranging the terms. The first expression in the chain of inequalities in (19) is equal

to Rev(S), which implies that the last expression in the same chain of inequalities lower bounds

Rev(S). We focus on each term in the square brackets on the right side of (19) and lower bound

each one of these terms, in which case, we lower bound Rev(S) as well.

Consider the first term in the square brackets on the right side of (19). By the definition of S∗D,

we have S∗D ⊆ S∗, which yields Θ(N \S∗)≤Θ(N \S∗D). Noting also that µ≤ 1, we have

µΘ(S∗D)

1 +µΘ(N \S∗)
≥ µΘ(S∗D)

1 + Θ(N \S∗D)
=

µΘ(S∗D)

1 +
∑

i∈N\S∗
D

vi
1+V (N−i)

(b)

≥ µΘ(S∗D)

1 +
∑

i∈N\S∗
D

vi
1+V (S∗

D
)

=
µΘ(S∗D)

1 +
V (N\S∗

D
)

1+V (S∗
D

)

(c)
=

1 +V (S∗D)

1 +V (N)
µΘ(S∗D), (20)

where (b) holds because if i∈N \S∗D, then V (N−i) = V (N)−vi ≥ V (N)−V (N \S∗D) = V (S∗D) and

(c) uses the fact that V (S∗D) +V (N \S∗D) = V (N).

Consider the second term in the square brackets on the right side of (19). By the definition of

SD, we have SD = S \S∗ ⊆N \S∗, so Θ(SD)≤Θ(N \S∗). Thus, we get

µΘ(SD)

1 +µΘ(N \S∗)
≤ µΘ(SD)

1 +µΘ(SD)
=

µ
∑

i∈SD
vi

1+V (N−i)

1 +µ
∑

i∈SD
vi

1+V (N−i)

(d)

≤
∑

i∈SD
vi

1+V (N\SD)

1 +
∑

i∈SD
vi

1+V (N\SD)

=

V (SD)

1+V (N\SD)

1 + V (SD)

1+V (N\SD)

(e)
=

V (SD)

1 +V (N)
, (21)

where (d) holds because if i∈ SD, then we have µ
1+V (N−i)

= µ
1+V (N)−vi

≤ µ

1+V (N)−V (SD)
= µ

1+V (N\SD)
≤

1
1+V (N\SD)

, as well as noting that x
1+x

is increasing in x, whereas (e) uses the fact that V (SD) +
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V (N \SD) = V (N). Lastly, consider the third term in the square brackets on the right side of (19).

We have the identity N \ S = (N \ (S ∪ S∗))∪ (S∗ \ S), which can be verified by drawing a Venn

diagram. Thus, we get Θ(N \ S) = Θ(N \ (S ∪ S∗)) + Θ(S∗ \ S) = Θ(N \ SU) + Θ(S∗D), where the

last equality uses the definition of SU and S∗D. In this case, we obtain

[
V (SD)−V (S∗D)

] [
1 +µΘ(N \S)

]
= V (SD)

[
1 +µΘ(N \S)

]
−V (S∗D)

[
1 +µΘ(N \SU) +µΘ(S∗D)

]
≥ V (SD)−V (S∗D)

[
1 +µΘ(N \SU) +µΘ(S∗D)

]
. (22)

Thus, using the chains of inequalities in (20), (21) and (22) on the right side of (19), we will be

able to lower bound the right side of (19), which is what we do next.

By the discussion at the beginning of the proof, a lower bound on the expression on the right

side of (19) also yields a lower bound on Rev(S). Thus, by (20), (21) and (22), we get

Rev(S)≥Rev(S∗)

[
1 +

1 +V (S∗D)

1 +V (N)
µΘ(S∗D)− V (SD)

1 +V (N)
+
V (SD)−V (S∗D)

[
1+µΘ(N \SU)+µΘ(S∗D)

]
2 (1 +V (N))

]
(f)
= Rev(S∗)

[
1 +

µΘ(S∗D)

1 +V (N)

[
1 +

V (S∗D)

2

]
− V (SD)

2(1 +V (N))
− V (S∗D)

2 (1 +V (N))

[
1 +µΘ(N \SU)

]]

≥Rev(S∗)

[
1− V (SD)

2(1 +V (N))
− V (S∗D)

2 (1 +V (N))

[
1 +µΘ(N \SU)

]]

≥Rev(S∗)

[
1− V (SD) +V (S∗D)

2(1 +V (N))

[
1 +µΘ(N \SU)

]]
(g)

≥ Rev(S∗)

[
1− V (SU)

2(1 +V (N))

{
1 +µ

∑
i∈N\SU

vi
1 +V (N−i)

}]
(h)

≥ Rev(S∗)

[
1− V (SU)

2(1 +V (N))
B2(SU ,N)

]
(i)

≥ 1

2
Rev(S∗),

where (f) is by arranging the terms, (g) follows because SD ∩S∗D = ∅ and SD ∪S∗D ⊆ S ∪S∗ = SU

as well as using the definition of Θ(N \SU), (h) holds because B2(SU ,N) = 1 +
∑

i∈N\SU
vi

1+V (N−i)

by the discussion at the beginning of this section and (i) holds because B2(SU ,N)≤ 1+V (N)

1+V (SU )
by

Lemma C.1. By the chain of inequalities above, we have Rev(S)≥ 1
2
Rev(S∗), as desired.

We give a problem instance to show that the best revenue-ordered assortment cannot provide

a performance guarantee better than 1
2
. We have n = 3 products and all customers have rank

cutoff of m = 2. The revenues and preference weights are (r1, r2, r3) = (1 + ε + 1
ε
,1 + ε,1) and

(v1, v2, v3) = ( 1
1+ε+ε2

, 1
ε2
, 1
ε
). The revenue-ordered assortments are {1}, {1,2} and {1,2,3}. Defining

f(ε) = ε−2/(1 + (1 + ε + ε2)−1 + ε−1) and g(ε) = ε−1/(1 + (1 + ε + ε2)−1 + ε−2), the expected
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revenues from these assortments are Rev({1}) = 1
ε

(1+f(ε)+g(ε)), Rev({1,2}) = ( 1
ε
+ 1+ε

ε2
) (1+g(ε)),

Rev({1,2,3}) = 2
ε

+ 1+ε
ε2

, whereas Rev({1,3}) = 2
ε

(1+f(ε)). Simple algebra yields limε→0
Rev({1})

Rev({1,3})
=

limε→0
Rev({1,2})
Rev({1,3})

= limε→0
Rev({1,2,3})
Rev({1,3})

= 1
2
. Thus, as ε gets arbitrarily close to zero, the best

revenue-ordered assortment provides at most half of the optimal expected revenue.

Appendix E: Using Simulation to Estimate Expected Revenues

In our PTAS, we construct O((n/ε)
O(1/ε2)

) candidate assortments, evaluate the expected revenue

of each candidate assortment and pick the best one. The running time to construct the candidate

assortments as in Section 6.2 is independent of m, but the running time to compute the expected

revenue from an assortment, which we denote by RevOps, depends exponentially on m. In this

section, we use simulation to estimate the expected revenue from each assortment so that our

PTAS is guaranteed to provide a (1 − 6 ε)-approximate solution with 1 − ε probability. The

number of samples used in the simulation will depend polynomially on n and will be independent

of m. We estimate the choice probability of any product within any assortment as follows. Using

the random variables {Ui : i ∈N} and U0 to denote the utilities of the products and no-purchase

option, we generate L samples of these random variables. Letting T = O((n/ε)
O(1/ε2)

) to denote

the number of candidate assortments and setting θ = ( 1
n

+ maxi∈N vi)/mini∈N vi to measure the

relative gap between largest and smallest preference weights, we choose the number of samples as

L= d θ2n2
2 ε2

log( 2T n2

ε
)e. Letting {Û `

i : i ∈ N} and Û `
0 for ` = 1, . . . ,L be our samples and adopting

the notation at the end of Section 3, we use ω̂` to capture the permutation corresponding to the

ordering of the utilities in sample `. Noting (4), we estimate the probability that a customer with

rank cutoff k chooses product i within assortment S as

π̂ki (S) =
1

L

L∑
`=1

1
(

rank(i, ω̂`)< rank(j, ω̂`) ∀ j ∈ S−i ∪{0}
)

1
(

rank(i, ω̂`)≤ k
)
. (23)

In this case, we can interpret
∑

k∈M λk π̂ki (S) as a sample average approximation to the choice

probability given by (2) under our multinomial logit model with rank cutoffs.

In the next lemma, we use the Hoeffding inequality to bound the gap between the choice

probabilities given in (2) and (23).

Lemma E.1 Letting π̂ki (S) be computed as in (23), for any assortment S ⊆N and product i∈ S,

we have P{|π̂ki (S)−πki (S)| ≥ ε
θ n
} ≤ ε

T n2
.

Proof: We can view the expression in (23) as the average of L independent samples of Bernoulli

random variables. Furthermore, each of these Bernoulli random variables has expectation πki (S). By
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Hoeffding inequality, if SL is a sum of L independent Bernoulli random variables, then we have

P{|SL−E{SL}| ≥ t} ≤ 2 exp(− 2 t2

L
). Therefore, we obtain

P
{
|π̂ki (S)−πki (S)| ≥ ε

θ n

}
= P

{∣∣∣∣∣
L∑
`=1

1
(

rank(i, ω̂`)< rank(j, ω̂`) ∀ j ∈ S−i ∪{0}
)

1
(

rank(i, ω̂`)≤ k
)
−Lπki (S)

∣∣∣∣∣ ≥ Lε

θ n

}

≤ 2exp

(
− 2Lε2

θ2 n2

)
≤ ε

T n2
,

where the last inequality holds because we have L≥ θ2 n2

2 ε2
log( 2T n2

ε
) by our choice of the number

of samples at the beginning of this section.

Let R(S) =
∑

k∈M
∑

i∈S λ
k ri π

k
i (S) be the expected revenue from assortment S. Using (23), the

sample average approximation to this expected revenue is R̂(S) =
∑

k∈M
∑

i∈S λ
k ri π̂

k
i (S). In the

next lemma, we use the previous lemma along with the union bound to characterize the gap between

the expected revenue from any assortment and its sample average approximation.

Lemma E.2 Letting S∗ be an optimal solution to problem (7), for any assortment S, the expected

revenue from the assortment satisfies P{|R̂(S)−R(S)| ≤ εR(S∗)} ≥ 1− ε
T

.

Proof: By Lemma E.1, for each i ∈ S and k ∈ M , P{|π̂ki (S)−πki (S)| ≥ ε
θ n
} ≤ ε

T n2
. Since

|S| ≤ n and |M | ≤ n, the union bound yields P{|π̂ki (S)−πki (S)| ≥ ε
θ n

for some i∈ S and k ∈M} ≤ ε
T

,

in which case, we get P{|π̂ki (S)−πki (S)| ≤ ε
θ n

for all i∈ S and k ∈M} ≥ 1− ε
T

. On the other hand,

if we have |π̂ki (S)−πki (S)| ≤ ε
θ n

for all i∈ S and k ∈M , then we get

|R̂(S)−R(S)| ≤
∑
k∈M

∑
i∈S

λk ri |π̂ki (S)−πki (S)| ≤
∑
k∈M

∑
i∈S

λk ri
ε

θ n

(a)
= ε

∑
k∈M

∑
i∈S

λk ri
minj∈N vj

1 +nmaxj∈N vj
≤ ε

∑
k∈M

∑
i∈S

λk ri
vi

1 +V (N)

(b)
= ε

∑
k∈M

∑
i∈N

λk ri π
k
i (N)

(c)

≤ εR(S∗),

where (a) uses the definition of θ, (b) holds because πki (N) = vi
1+V (N)

by Theorem 3.1 and (c) holds

because the assortment N provides an objective value of
∑

k∈M
∑

i∈N λ
k ri π

k
i (N) for (7).

By the discussion in the proof of Theorem 5.1, there exists a (1−4 ε)-approximate solution among

the candidate assortments constructed by our PTAS. Thus, letting S∗ be an optimal solution to

problem (7) and using C = {At : t∈A} to capture the collection of candidate assortments, setting

S̃ = arg maxS∈CR(S), we have R(S̃) ≥ (1− 4 ε)R(S∗). Finding S̃ requires checking the expected

revenue from each candidate assortment. Instead, we check the sample average approximation to

the expected revenue, so we set Ŝ = arg maxS∈C R̂(S). Since there are T candidate assortments,

using the union bound in Lemma E.2, we get P{|R̂(S)−R(S)| ≤ εR(S∗) for all S ∈ C}≥ 1− ε, in
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which case, with probability at least 1 − ε, we have R(Ŝ) ≥ R̂(Ŝ)− εR(S∗) ≥ R̂(S̃)− εR(S∗) ≥
R(S̃)− 2εR(S∗) ≥ (1 − 4 ε)R(S∗) − 2εR(S∗), where the second inequality holds because the

definition of Ŝ yields R̂(Ŝ)≥ R̂(S̃). Thus, the assortment Ŝ satisfies R(Ŝ)≥ (1− 6 ε)R(S∗). Using

T =O((n/ε)
O(1/ε2)

), the number of samples is L=O( θ
2n2

ε2
log(T n

2

ε
)) =O( θ

2 n2

ε4
log(n/ε)).

Appendix F: Comparison of Choice Probability Boosts

In the next lemma, we give a monotonicity property of Bk(S,N) computed through (1). We use

this lemma in the proof of Proposition 6.1 when showing the limited degradation property.

Lemma F.1 Consider S̃, Ŝ ⊆N with |S̃|= |Ŝ|, where for each i∈ S̃, there exists j(i)∈ Ŝ such that

vi ≥ vj(i) and j(i) 6= j(`) for each i 6= `. Then, we have Bk(S̃,N)≤Bk(Ŝ,N) for all k ∈M .

Proof: By the assumption in the lemma, for each i ∈ N \ S̃, there must exists k(i) ∈ N \ Ŝ
such that vi ≤ vk(i) and k(i) 6= k(`) for each i 6= `. For F ⊆ N with F ∩ S̃ = ∅, we define K(F )

as K(F ) = {k(i) : i∈ F}. We use induction over the rank cutoff to show that Bk(S̃,N \F ) ≤
Bk(Ŝ,N \K(F )) for all F ⊆N with F ∩ S̃ = ∅ and k ∈M . Since B1(·, ·) = 1, the result holds for

k = 1. Assuming that the result holds for rank cutoff of k− 1, we show that the result holds for

rank cutoff of k. For i 6∈ S̃ and i 6∈ F , letting F+i = F ∪{i}, since F ∩ S̃ =∅, we get F+i ∩ S̃ =∅, so

Bk−1(S̃, (N \ F )−i) = Bk−1(S̃,N \ F+i) ≤ Bk−1(Ŝ,N \K(F+i)) = Bk−1(Ŝ, (N \K(F ))−k(i)), where

the inequality follows from the induction assumption along with the fact that F+i∩ S̃ =∅ and the

second equality uses the fact that i 6∈ F and k(i) 6= k(`) for i 6= `, so K(F+i) =K(F )∪ {k(i)}. In

this case, by the definition of Bk(S,N) in (1), we get

Bk(S̃,N \F ) = 1 +
∑

i∈(N\F )\S̃

vi
1 +V ((N \F )−i)

Bk−1(S̃, (N \F )−i)

≤ 1 +
∑

i∈(N\F )\S̃

vi
1 +V ((N \F )−i)

Bk−1(Ŝ, (N \K(F ))−k(i))

= 1 +
∑

i∈(N\F )\S̃

vi
1 +V (N)−V (F )− vi

Bk−1(Ŝ, (N \K(F ))−k(i)), (24)

where the last equality uses the fact that i ∈ (N \ F ) \ S̃, which implies that i 6∈ F , so we have

V ((N \F )−i) = V (N \F+i) = V (N)−V (F+i) = V (N)−V (F )− vi.

Using the definition of k(i) at the beginning of the proof, we have vk(i) ≥ vi. Since vk(i) ≥ vi, we

also get V (K(F )) =
∑

i∈F vk(i) ≥
∑

i∈F vi = V (F ). Thus, we have

vi
1 +V (N)−V (F )− vi

≤
vk(i)

1 +V (N)−V (K(F ))− vk(i)

. (25)

Lastly, in Lemma C.2, which we shortly give in this section, we show the identity (N \K(F )) \ Ŝ =

{k(i) : i ∈ (N \ F ) \ S̃}. Thus, for any function g : < → <, it follows that
∑

i∈(N\F )\S̃ g(vk(i)) =
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`∈(N\K(F ))\Ŝ g(v`) by change of variables in the sum. In this case, noting the inequality in (25),

we can continue the chain of inequalities in (24) as

1 +
∑

i∈(N\F )\S̃

vi
1 +V (N)−V (F )− vi

Bk−1(Ŝ, (N \K(F ))−k(i))

≤ 1 +
∑

i∈(N\F )\S̃

vk(i)

1 +V (N)−V (K(F ))− vk(i)

Bk−1(Ŝ, (N \K(F ))−k(i))

(a)
= 1 +

∑
i∈(N\F )\S̃

vk(i)

1 +V ((N \K(F ))−k(i))
Bk−1(Ŝ, (N \K(F ))−k(i))

(b)
= 1 +

∑
`∈(N\K(F ))\Ŝ

v`
1 +V ((N \K(F ))−`)

Bk−1(Ŝ, (N \K(F ))−`)

(c)
= Bk(Ŝ,N \K(F )),

where (a) holds because i 6∈ F , so noting that k(i) 6= k(`) for i 6= `, we get k(i) 6∈K(F ), (b) follows

since
∑

i∈(N\F )\S̃ g(vk(i)) =
∑

`∈(N\K(F ))\Ŝ g(v`) and (c) follows from (1).

The chain of inequalities above, along with (24), completes the induction argument. In this case,

using the inequality Bk(S̃,N \F )≤Bk(Ŝ,N \K(F )) with F =∅ yields the desired result.

We use the next lemma in the proof of Lemma F.1, where we show that the sets (N \K(F )) \ Ŝ

and {k(i) : i∈ (N \F ) \ S̃} are identical.

Lemma F.2 Consider S̃, Ŝ ⊆N with |S̃|= |Ŝ|, where for each i∈N \ S̃, there exists k(i)∈N \ Ŝ

such that vi ≤ vk(i) and k(i) 6= k(`) for each i 6= `. Then, for any F ⊆N with F ∩ S̃ = ∅, letting

K(F ) = {k(i) : i∈ F}, we have (N \ Ŝ) \K(F ) = {k(i) : i∈ (N \ S̃) \F}.

Proof: For each i∈N \ S̃, we have k(i)∈N \ Ŝ, which implies that {k(i) : i∈N \ S̃} ⊆N \ Ŝ. On the

other hand, using the fact that k(i) 6= k(`) for i 6= `, we get |{k(i) : i ∈N \ S̃}|= |N \ S̃|= |N \ Ŝ|,

where the last equality holds since |S̃| = |Ŝ|. In this case, having {k(i) : i ∈ N \ S̃} ⊆ N \ Ŝ and

|{k(i) : i ∈N \ S̃}|= |N \ Ŝ| implies that N \ Ŝ = {k(i) : i ∈N \ S̃}. Moreover, we have F ⊆N \ S̃

and K(F ) = {k(i) : i∈ F}. In this case, having N \ Ŝ = {k(i) : i∈N \ S̃} and K(F ) = {k(i) : i∈ F}

with k(i) 6= k(`) for i 6= ` implies that (N \ Ŝ) \K(F ) = {k(i) : i∈ (N \ S̃) \F}.

Appendix G: Computational Experiments on Sushi Preferences

We give computational experiments that follow an outline similar to the one in Section 7, but we

populate the preference lists by using a dataset from Kamishima (2018).

Experimental Setup: We generate purchase histories of customers making choices according

to a ground choice model that does not comply with the multinomial logit model. Our goal is to
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check the ability of our choice model to predict the purchases of the customers and to pick profitable

assortments. The ground choice model that we use is the non-parametric choice model. Recall that

we have C customer types in the non-parametric choice model. The probability that a customer

of type ` arrives into the system is β`. A customer of type ` is characterized by the preference

list (j`(1), . . . , j`(n`)), where n` is the number of products in the preference list and j`(k) is the

product at position k. To populate the preference lists in the non-parametric choice model, we use a

dataset from Kamishima (2018), which includes the rankings of 10 sushi varieties declared by 5000

diners. We use (i`(1), . . . , i`(10)) to denote the ranked list declared by diner ` in the dataset, where

i`(k) is the sushi variety with rank order k for diner `. In our non-parametric choice model, we have

one customer type for each diner, so the number of customer types is C = 5000. To come up with

the preference list for customer type ` in the non-parametric choice model, we randomly truncate

the ranked list of diner ` in the dataset. In particular, sampling n` from the uniform distribution

over {1, . . . ,10}, the preference list for customer type ` is (i`(1), . . . , i`(n`)). In the non-parametric

choice model, customers of each type ` arrive with an equal probability of β` = 1/5000.

Once we generate an instance of the ground choice model as above, we use the same approach

in Section 7.1 to sample the purchase history of τ customers whose choices are governed by the

ground choice model. We use this past purchase history as training dataset. To use as validation

and testing datasets, we also generate two other purchase histories, each including 1250 customers.

We generate the training, validation and testing datasets independently. We fit the five choice

models used in Section 7.1, which we refer to as RCO, SML, MML, SAC and MAC.

Comparing Out-of-Sample Log-Likelihoods: We use the same approach in Section 7.2 to

compare the out-of-sample log-likelihoods of the fitted choice models. We generate an instance

of the ground choice model as discussed earlier in this section. Using the ground choice model,

we generate three training datasets by varying the number of customers in the purchase history

over τ ∈ {1000,1750,2500}. To each of the three training datasets, we fit RCO, SML, MML,

SAC and MAC. In Table EC.1, we compare the out-of-sample log-likelihoods of the fitted choice

models. We replicated our computational experiments for 10 ground choice models that we

randomly generate. The ground choice models differ in the samples of {n` : ` = 1, . . . ,5000} that

we use to truncate the ranked lists of the diners when populating the preference lists. Each row in

the table corresponds to a different ground choice model and we list the index of the ground choice

model in the first column. The layout of the rest of the table is identical to that of Table 3. Our

results indicate that if we have a large number of customers in the training datasets to estimate

the parameters of the fitted choice models, then MML can catch up with RCO. As discussed in

Section 7.2, MML can approximate any choice model that is based on random utility maximization
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τ = 1000

Grnd. Out-of-Sample Log-Likelihoods Perc. Gap with RCO
Ch. RCO SML MML SAC MAC SML MML SAC MAC
1 -1834.09 -1840.64 -1840.64 -1872.63 -1872.63 0.36 0.36 2.10 2.10
2 -1927.39 -1937.53 -1932.15 -1968.38 -1967.61 0.53 0.25 2.13 2.09
3 -1908.67 -1909.80 -1909.80 -1950.17 -1950.17 0.06 0.06 2.17 2.17
4 -1848.16 -1859.12 -1859.12 -1904.29 -1904.29 0.59 0.59 3.04 3.04
5 -1892.07 -1894.01 -1894.01 -1919.29 -1919.29 0.10 0.10 1.44 1.44
6 -1913.07 -1916.44 -1918.32 -1964.98 -1965.32 0.18 0.27 2.71 2.73
7 -1919.34 -1927.84 -1924.59 -1969.15 -1969.15 0.44 0.27 2.59 2.59
8 -1891.25 -1889.84 -1896.00 -1907.49 -1907.49 -0.07 0.25 0.86 0.86
9 -1889.58 -1894.29 -1885.36 -1919.50 -1909.19 0.25 -0.22 1.58 1.04
10 -1922.99 -1923.24 -1927.64 -1944.06 -1947.74 0.01 0.24 1.10 1.29

Avg. 0.24 0.22 1.97 1.93

τ = 1750

Grnd. Out-of-Sample Log-Likelihoods Perc. Gap with RCO
Ch. RCO SML MML SAC MAC SML MML SAC MAC
1 -1837.59 -1843.25 -1843.25 -1880.29 -1880.29 0.31 0.31 2.32 2.32
2 -1926.58 -1935.66 -1926.86 -1967.52 -1963.86 0.47 0.01 2.12 1.93
3 -1903.79 -1904.98 -1904.95 -1941.90 -1941.90 0.06 0.06 2.00 2.00
4 -1848.05 -1856.73 -1860.98 -1904.91 -1904.91 0.47 0.70 3.08 3.08
5 -1891.68 -1893.66 -1893.66 -1914.94 -1914.94 0.10 0.10 1.23 1.23
6 -1906.02 -1907.84 -1906.51 -1955.84 -1958.38 0.10 0.03 2.61 2.75
7 -1916.36 -1923.56 -1933.51 -1954.31 -1951.88 0.38 0.89 1.98 1.85
8 -1886.31 -1889.57 -1889.57 -1912.94 -1912.94 0.17 0.17 1.41 1.41
9 -1889.03 -1893.78 -1893.59 -1925.89 -1918.67 0.25 0.24 1.95 1.57
10 -1924.98 -1924.54 -1932.45 -1945.61 -1954.63 -0.02 0.39 1.07 1.54

Avg. 0.23 0.29 1.98 1.97

τ = 2500

Grnd. Out-of-Sample Log-Likelihoods Perc. Gap with RCO
Ch. RCO SML MML SAC MAC SML MML SAC MAC
1 -1835.09 -1840.69 -1840.69 -1877.27 -1877.27 0.31 0.31 2.30 2.30
2 -1924.56 -1932.61 -1930.71 -1966.48 -1962.96 0.42 0.32 2.18 2.00
3 -1904.37 -1905.37 -1904.52 -1938.31 -1938.31 0.05 0.01 1.78 1.78
4 -1843.63 -1853.59 -1845.50 -1907.69 -1906.94 0.54 0.10 3.47 3.43
5 -1890.50 -1892.97 -1890.61 -1922.95 -1918.64 0.13 0.01 1.72 1.49
6 -1902.56 -1905.67 -1890.21 -1945.08 -1940.41 0.16 -0.65 2.23 1.99
7 -1916.54 -1924.01 -1924.67 -1963.19 -1962.05 0.39 0.42 2.43 2.37
8 -1882.90 -1885.79 -1875.24 -1909.40 -1909.40 0.15 -0.41 1.41 1.41
9 -1883.90 -1888.98 -1875.08 -1926.91 -1921.07 0.27 -0.47 2.28 1.97
10 -1924.58 -1924.15 -1930.16 -1958.98 -1967.08 -0.02 0.29 1.79 2.21

Avg. 0.24 -0.01 2.16 2.10

Table EC.1 Comparison of the out-of-sample log-likelihoods of the fitted choice models.

arbitrarily well, but it needs a large number of customers in the training dataset to avoid overfitting.

When the number of customers in the training datasets is on the small side, RCO has an edge over

MML. Overall a large majority of the ground choice models, the out-of-sample log-likelihoods of

the fitted RCO are better than those of the fitted SML, SAC and MAC. Even when we have the

largest number of customers in the training datasets, the out-of-sample log-likelihoods of RCO are

better than those of MML for seven ground choice models.

Comparing Expected Revenue Performance: We use the same approach in Section 7.3 to

compare the ability of the fitted choice models to pick profitable assortments. In Table EC.2, we
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compare the expected revenues from the assortments obtained by RCO, SML, MML, SAC and MAC.

The layout of this table is identical to that of Table 4. Our results indicate that RCO performs slight

but noticeable improvements over SML and MML. The gaps in the expected revenues obtained by

RCO and MML decrease as we have more customers in the training datasets, but RCO maintains

its edge over MML for a majority of the ground choice models. Comparing RCO with SAC and

MAC, the expected revenues obtained by RCO are significantly better than those obtained by

SAC and MAC. To ensure that our results are robust, we replicated our results for 10 different

purchase histories sampled from each of the 10 ground choice models. Considering the three levels

of data availability that we work with, we end up with 300 ground choice model-purchase history-

data availability combinations. Over all of the 300 combinations, RCO improves the out-of-sample

log-likelihoods of SML, MML, SAC and MAC, respectively, by 0.15%, 0.10%, 2.39% and 2.34% on

average. Over the 300 combinations, in 209, 210, 300 and 300 combinations, the out-of-sample

log-likelihoods of RCO are, respectively, better than those of SML, MML, SAC and MAC. Although

the improvements in out-of-sample log-likelihoods provided by RCO over SML and MML are slight,

they are consistent. Considering the expected revenue performance, RCO improves the expected

revenues obtained by SML, MML, SAC and MAC, respectively, by 0.60%, 0.54%, 5.54% and 5.45%

on average. In 77%, 78%, 86% and 85% of the product revenue samples, the expected revenue

performance RCO is, respectively, at least as good as that of SML, MML, SAC and MAC.

Appendix H: Performance of the Approximation Scheme

We test the performance of the PTAS given in Section 5 by comparing the expected revenues from

the assortments obtained by the PTAS with an upper bound on the optimal expected revenues.

Experimental Setup: In our computational experiments, we randomly generate a large number

of problem instances. For each problem instance, we use our PTAS to obtain an approximate

solution to problem (7). At the end of this section, we give an efficient approach to obtain an

upper bound on the optimal expected revenue. For each problem instance, we use this approach

to obtain an upper bound on the optimal expected revenue. We compare the expected revenue

from the solution provided by our PTAS with the upper bound on the optimal expected revenue.

We use the following approach to generate our problem instances. In all of our problem instances,

we have n = 25 products. We classify each product along two dimensions. First, a product can

have high or low revenue. Second, a product can have high or low preference weight. Thus, we

have four classes of products, corresponding the two choices along two dimensions. We generate

the high and low preference weights, respectively, from the uniform distribution over [ 1
γ
100, 1

γ
200]

and [ 1
γ
10, 1

γ
20], where γ is a parameter that we vary. Noting that the preference weight of the
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τ = 1000

Comp. with SML Comp. with MML Comp. with SAC Comp. with MAC
Grnd. Perc. RCO� SML� Perc. RCO� MML� Perc. RCO� SAC� Perc. RCO� MAC�
Ch. Gap SML RCO Gap MML RCO Gap SAC RCO Gap MAC RCO

1 0.11 42 34 0.11 42 34 4.66 83 17 4.66 83 17
2 0.79 53 23 0.95 52 23 5.81 89 11 5.86 90 10
3 0.49 40 19 0.49 40 19 5.53 86 14 5.53 86 14
4 0.52 49 25 0.52 49 25 5.17 82 18 5.17 82 18
5 0.68 45 27 0.68 45 27 5.01 85 15 5.01 85 15
6 1.42 52 13 3.88 64 14 9.88 87 13 9.02 83 17
7 1.03 49 16 0.73 44 15 6.02 85 15 6.02 85 15
8 -0.55 37 47 -0.69 34 43 6.77 83 17 6.77 83 17
9 -0.07 34 32 -0.10 29 25 6.22 83 17 6.42 85 15
10 0.86 44 18 0.95 42 18 5.19 88 12 5.09 86 14

Avg. 0.53 45 25 0.75 44 24 6.03 85 15 5.95 85 15

τ = 1750

Comp. with SML Comp. with MML Comp. with SAC Comp. with MAC
Grnd. Perc. RCO� SML� Perc. RCO� MML� Perc. RCO� SAC� Perc. RCO� MAC�
Ch. Gap SML RCO Gap MML RCO Gap SAC RCO Gap MAC RCO

1 0.33 45 32 0.33 45 32 5.21 87 13 5.21 87 13
2 0.77 51 19 0.17 39 19 5.64 89 11 5.46 86 14
3 0.45 39 20 0.30 37 19 5.85 88 12 5.85 88 12
4 0.66 43 18 0.65 35 18 4.96 78 22 4.96 78 22
5 1.00 43 19 1.00 43 19 4.86 88 12 4.86 88 12
6 1.17 46 14 1.05 45 12 5.19 84 16 5.28 83 17
7 0.79 41 17 0.90 43 16 5.62 79 21 5.32 79 21
8 0.40 41 27 0.40 41 27 7.53 88 12 7.53 88 12
9 -0.03 34 31 0.05 30 28 5.54 89 11 5.14 89 11
10 0.78 44 20 0.17 30 27 4.90 90 10 4.53 88 12

Avg. 0.63 43 22 0.50 39 22 5.53 86 14 5.41 85 15

τ = 2500

Comp. with SML Comp. with MML Comp. with SAC Comp. with MAC
Grnd. Perc. RCO� SML� Perc. RCO� MML� Perc. RCO� SAC� Perc. RCO� MAC�
Ch. Gap SML RCO Gap MML RCO Gap SAC RCO Gap MAC RCO

1 0.41 41 26 0.41 41 26 5.90 88 12 5.90 88 12
2 0.86 48 17 0.37 38 17 5.12 87 13 4.71 86 14
3 0.53 41 19 0.27 35 18 5.12 91 9 5.12 91 9
4 0.66 45 19 0.20 36 20 7.26 80 20 7.09 80 20
5 1.00 45 20 1.19 43 17 5.10 85 15 5.63 90 10
6 1.16 48 17 0.65 51 19 5.88 79 21 5.40 76 24
7 0.72 42 18 1.05 41 17 6.17 86 14 5.74 84 16
8 0.60 47 26 0.21 38 21 7.76 88 12 7.76 88 12
9 -0.21 33 35 -0.53 18 32 5.90 86 14 6.81 91 9
10 0.75 42 20 0.05 30 23 4.71 85 15 4.30 84 16

Avg. 0.65 43 22 0.39 37 21 5.89 86 15 5.85 86 14

Table EC.2 Comparison of the expected revenues obtained by using the fitted choice models.

no-purchase option is fixed at one, a larger value of γ implies that the customers are more likely to

leave without a purchase. We generate the high and low revenues, respectively, from the uniform

distribution over [150,200] and [θ, θ + 10], where θ is another parameter that we vary. The rank

cutoff of all customers is m= 2. We use ε= 0.7 in our PTAS, yielding a performance guarantee of

less than 50%, but even this value of ε provides solutions with remarkably high quality. Varying
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(γ, θ) over {1,10,50} × {40,50,60}, we obtain nine parameter configurations. In each parameter

configuration, we generate 50 problem instances.

Computational Results: We give our numerical results in Table EC.3. In this table, the first

column shows the parameter configuration using the pair (θ, γ). Recalling that we generate 50

problem instances in each parameter configuration, the second column shows the average percent

gap between the expected revenue from the assortment obtained by our PTAS and the upper

bound on the optimal expected revenue. In other words, letting Revk be the expected revenue

from the assortment obtained by our PTAS for problem instance k and UBk be the upper

bound on the optimal expected revenue, the second column gives the average of the data

{100× UBk−Revk

UBk
: k= 1, . . . ,50}. The third, fourth and fifth columns, respectively, give the standard

deviation, 90th percentile and maximum of the same data. The result in Table EC.3 indicate that

our PTAS performs remarkably well. The average optimality gap is 0.26%. In more than 90% of

the problem instances, the optimality gap is no larger than 0.72%, even considering the fact that

we compare the expected revenue obtained by our PTAS with an upper bound on the optimal

expected revenue, rather than the optimal expected revenue itself. Over all problem instances, the

average CPU time for our PTAS is 11.97 seconds. Recall that the rank cutoffs of all customers

is m = 2 in our test problems. We carried out a limited set of computational experiments with

m ∈ {3,4} as well. In these computational experiments, the average CPU time for our PTAS is,

respectively, 18.20 and 109.72 seconds, when we have m= 3 and m= 4.

Upper Bound on the Optimal Expected Revenue: We give an efficient approach to

compute an upper bound on the optimal objective value of problem (7). Our approach is applicable

to the case when m= 2, which is the case that we consider in our computational experiments. When

m= 2, noting that B1(S,N) = 1 and B2(S,N) = 1 +
∑

i∈N\S
vi

1+V (N−i)
by (1), letting θi = vi

1+V (N−i)

and dropping the constant 1
1+V (N)

in (7) for notational brevity, the objective function of problem

(7) is W (S)
[
λ1 +λ2(1 +

∑
i∈N\S θi)

]
. Noting that λ1 +λ2 = 1, problem (7) becomes

max
S⊆N

{
W (S)

[
1 +λ2

∑
i∈N\S

θi

]}
. (26)

To obtain an upper bound on the optimal objective value of the problem above, let Θ =
∑

i∈N θi,

which is the largest value that
∑

i∈N\S θi can take. We partition the interval [0,Θ], into K

subintervals {[νk−1, νk] : k= 1, . . . ,K}, where we have 0 = ν0 ≤ ν1 ≤ . . . ≤ νK−1 ≤ νK = Θ. Any

partition yields an upper bound on the optimal expected revenue, but finer partitions will yield

tighter upper bounds. Intuitively speaking, for the objective function in (26) to take a large value,

both W (S) and
∑

i∈N\S θi should take large values. Thus, we formulate a knapsack problem to
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Param. Std. 90th
(θ, γ) Avg. Dev. Perc. Max.

(40, 1) 0.16 0.49 0.38 2.71
(40,10) 0.17 0.49 0.40 2.72
(40,50) 0.18 0.48 0.37 2.59

Avg. 0.17 0.49 0.39 2.67

Param. Std. 90th
(θ, γ) Avg. Dev. Perc. Max.

(50, 1) 0.23 0.22 0.51 0.86
(50,10) 0.23 0.23 0.53 0.86
(50,50) 0.27 0.24 0.58 0.95

Avg. 0.24 0.23 0.54 0.89

Param. Std. 90th
(θ, γ) Avg. Dev. Perc. Max.

(60, 1) 0.34 0.25 0.69 1.15
(60,10) 0.35 0.25 0.69 1.18
(60,50) 0.37 0.25 0.72 1.05

Avg. 0.35 0.25 0.70 1.13

Table EC.3 Performance of our PTAS.

maximize W (S) while making sure that
∑

i∈N\S θi is also above a certain threshold. For each

k= 1, . . . ,K, using the decision variables x= (x1, . . . , xn), consider the problem

Zk = max
x∈[0,1]n

{∑
i∈N

ri vi xi :
∑
i∈N

θi (1−xi)≥ νk−1

}
. (27)

If we impose the constraint x∈ {0,1}n in the problem above, then this problem finds an assortment

S that maximizes W (S) while ensuring that
∑

i∈N\S θi ≥ νk−1. Since we impose the constraint

x∈ [0,1]n in the problem above, this problem is a continuous knapsack problem and we can solve

it efficiently. In the next theorem, we show that we can obtain an upper bound on the optimal

objective value of problem (26) by solving the problem above for each k= 1, . . . ,K.

Theorem H.1 Noting that Zk is the optimal objective value of problem (27), letting Rev∗ be the

optimal objective value of problem (26), we have

max
k=1,...,K

{
(1 +λ2 νk)Zk

}
≥ Rev∗.

Proof: Using S∗ to denote an optimal solution to (26), let x̂ = (x̂1, . . . , x̂n) ∈ {0,1}n be such that

x̂i = 1 if and only if i∈ S∗. Furthermore, let `∈ {1, . . . ,K} be such that
∑

i∈N θi (1− x̂i)∈ [ν`−1, ν`].

In this case, x̂ is a feasible solution to problem (27), when we solve this problem with k= `. Thus,

we obtain Z` ≥
∑

i∈N ri vi x̂i =W (S∗), where the last equality uses the definition of x̂. Also, by the

definition of `, we have ν` ≥
∑

i∈N θi (1− x̂i) =
∑

i∈N\S∗ θi. In this case, we get

max
k=1,...,K

{
(1 +λ2 νk)Zk

}
≥ (1 +λ2 ν`)Z` ≥

(
1 +λ2

∑
i∈N\S∗

θi

)
W (S∗) = Rev∗,

where the second inequality holds because we have the inequalities Z` ≥W (S∗) and ν` ≥
∑

i∈N\S∗ θi

as discussed earlier in the proof.

In our computational experiments, we divide the interval [0,Θ] into subintervals of width 0.0001

to obtain an upper bound on the optimal expected revenue.


