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We introduce the click-based MNL choice model, a novel framework for capturing customer purchas-

ing decisions in e-commerce settings. We augment the classical Multinomial Logit choice model with the

assumption that customers only consider the items they have clicked on before they proceed to compare their

random utilities. We propose a simple estimation framework that leverages clickstream data and machine

learning classification algorithms. We study the resulting assortment optimization problem, where the objec-

tive is to select a subset of products, made available for purchase, to maximize the expected revenue. Our

main algorithmic contribution comes in the form of a polynomial-time approximation scheme (PTAS) for

this problem, showing that the optimal expected revenue can be efficiently approached within any degree of

accuracy. In the course of establishing this result, we develop novel technical ideas, including enumeration

schemes and stochastic inequalities, which may be of broader interest. Using data acquired in collaboration

with Alibaba, we fit click-based MNL and Mixed MNL models to historical sales and click data in a setting

where the online platform must present customized six-product displays to users. We show that our approach

significantly outperforms the Mixed MNL models in terms of out-of-sample predictive accuracy, and the

computational cost of its estimation process is smaller by an order of magnitude.
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1. Introduction

Assortment optimization is a fundamental computational challenge faced by online platforms,

where the set of products displayed to customers can be seamlessly varied and personalized at

essentially no cost. Existing prediction models and decision support tools in this context gener-

ally take advantage of historical transaction data to infer customers’ preferences, as each purchase

transaction reveals a choice made by the corresponding customer amongst the available product

alternatives. Given this probabilistic prior about customer preferences, the selection of an assort-

ment to maximize expected revenue can be framed as a combinatorial optimization problem, which
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has received a great deal of attention in the operations research and revenue management literature,

as further elaborated in Section 1.3.

In recent years, online platforms increasingly collect data about additional forms of customer-

product interactions. The primary source of such data is clickstream information, corresponding to

the customers’ search and click behavior. Empirical studies in the quantitative marketing literature

suggest that clickstream data is highly valuable to predict customer purchases, brand loyalty, and

churn rates (Laudon and Traver 2013). For example, by taking into account the path of webpages

browsed by users of an online bookseller, Montgomery et al. (2004) show that the accuracy with

which they can predict purchase conversions is increased to 40%, up from a mere 7% without

integrating this piece of information. Nevertheless, despite marked research interest around discrete-

choice modeling in the past decade, the marginal value of clickstream data in decision-making

models still remains mostly unquantified in operational settings. In particular, leveraging these

data sources within the framework of the assortment optimization problem is an apparent blind

spot of the existing literature, from both modeling and computational standpoints.

Overview of our research contributions. Motivated by this state of affairs, the present paper aims

to augment the predictive and prescriptive abilities of traditional choice models in e-commerce

settings by incorporating click signals. Our main modeling idea is to assume that clicks coincide

with the set of alternatives considered by a customer during a product screening phase preceding

her final choice decision. This point of view leads us to introduce a choice model whose underlying

dynamics unfold in two sequential stages. In the first stage, the customer forms her consideration

set according to the click propensities. Then, in the second stage, she makes a purchasing decision

from among the products in this restricted consideration set according to the classical multinomial

logit (MNL) choice model. This modeling approach is inspired by the well-established literature

in quantitative marketing and operations around two-stage choice models, which were originally

conceived by Howard and Sheth (1969) and by Hauser (1978), and later empirically validated by

numerous works, such as those of Jeuland (1979) and Crompton and Ankomah (1993).

We depart from the existing literature in viewing the consideration set as being explicitly defined

by the click behavior, rather than being an unobserved latent parameter of the choice-making pro-

cess. Using data from Alibaba’s retail platform, we provide empirical evidence that our modeling

approach explains customers’ choice behavior significantly better than traditional choice models.

From a computational standpoint, the random formation of the consideration sets creates algorith-

mic and probabilistic hurdles that necessitate the design of novel methodological frameworks for

the resulting assortment optimization problem. In this context, our main technical contribution

is a polynomial-time approximation scheme, proving that the optimal expected revenue can be

efficiently approached within any degree of accuracy.
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In what follows, we provide a brief review of the most relevant papers on assortment optimization,

which sets the stage for a precise description of the modeling approach developed in this paper. A

more detailed overview of the related literature is provided in Section 1.3.

Brief review of existing literature. Starting with the seminal work of Talluri and van Ryzin

(2004), a growing line of research has explored assortment optimization problems under various

choice models and operational constraints. When customer choice is governed by the MNL model

(Luce 1959, McFadden 1974), and when there are no restrictions on the set of products to be

offered, Talluri and van Ryzin (2004) show that there exists an optimal assortment consisting of all

products priced above a certain threshold. Subsequent research papers have focused on constrained

versions of this problem, extending the breadth of retail scenarios where assortment optimization

is readily applicable (Rusmevichientong et al. 2010, Sumida et al. 2020).

One major limitation of the MNL choice model is its inability to capture customers’ hetero-

geneity; hence, considerable research efforts have focused on formulating assortment optimization

problems with choice models that account for latent customer heterogeneity. For example, a com-

mon approach for modeling general substitution patterns is to segment the customers into hetero-

geneous classes. Since the segment to which each customer belongs is not directly observable, the

latter approach gives rise to probabilistic mixture models, such as the extensively-studied mixture

of MNLs (see, e.g., Rusmevichientong et al. (2014), Désir et al. (2014), Feldman and Topaloglu

(2015a)).

Another popular approach for capturing customers’ choice heterogeneity is based on the notion

of consideration sets. Most random-utility maximization choice models presume that customers

consider all offered products before comparing their relative utilities. In reality, however, cus-

tomers may be led to disregard certain products based on prominent features such price, ratings

and reviews. For example, they may only consider purchasing products of a certain quality that

are priced below some threshold, as in the models considered by Aouad et al. (2020) and by

Jagabathula and Rusmevichientong (2016). Consequently, several recent papers have focused on

consideration set-based assortment optimization problems (Davis et al. 2015, Gallego et al. 2020,

Aouad and Segev 2020, Gallego and Li 2017). In these settings, the consideration sets are not

directly observable; their distribution can only be inferred probabilistically from the final purchas-

ing actions. Moreover, in order to develop polynomial-time algorithms for assortment optimization,

these studies place additional structural restrictions either on the considerations sets or on the

relative rankings over products’ utilities. For example, the model of Feldman and Topaloglu (2018)

assumes that the consideration sets are nested; the papers by Honhon et al. (2012), Aouad et al.

(2020) and Gallego and Li (2017) are all based on the assumption of a unique ranking, mean-

ing that all customers share an overarching ranking over the products’ utilities. These modeling
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assumptions imply that only a very small fraction of all potential consideration sets and rankings

occur with positive likelihood during the two-stage choice-making process.

Click-based MNL modeling approach. Our main modeling idea is to assume that the “clicks”

observed by e-commerce platforms explicitly describe the customers’ consideration sets, a key

distinctive feature in relation to the existing literature. Specifically, we define each customer’s

consideration set precisely as the set of products she has clicked on. This assumption is quite nat-

ural, considering that customers click on products either to purchase them or to collect additional

product-specific information. Following this main assumption, the customers’ purchasing process

unfolds in a two-step process. In the first step, the customer independently decides whether or not

to click on each of the offered products, thereby forming a consideration set. In the second step, the

customer makes a purchasing decision by ranking the utilities of the products she has clicked on;

such ranking decisions are captured via a standard MNL choice model. We refer to the resulting

choice model as the click-based MNL model, whose dynamics are formalized in Section 1.1.

This modeling approach has a number of distinct advantages. First, clickstream data is massively

available in e-commerce; thus, our operational use case of click data for designing product recom-

mendation engines is implementable in many e-commerce settings. Second, by assuming that the

clicks follow independent Bernoulli outcomes, we develop a choice model that is both parsimonious

and flexible. Specifically, the property that any potential consideration set occurs with positive like-

lihood is consistent with the lack of explicit structure in customers’ clicks, as observed in real-world

clickstream data such as those provided by Alibaba for our numerical experiments. This property

is in sharp contrast with other consideration set-based choice models utilized in earlier literature.

Lastly, the platform’s ability to fully observe all click events makes the estimation of the model

parameters quite straightforward. As explained in Section 1.2, the estimation strategy proposed in

this paper is very efficient from a computational standpoint, and it can easily take advantage of

state-of-the-art machine learning algorithms.

Nonetheless, at the core of our model lies the assumption that the observed “clicks” coincide

with the customers’ consideration sets. This notion leads to two fundamental research questions:

1. How practical is the assumption that customers’ consideration sets are described by their

clicks? Specifically, how does the predictive performance of the click-based MNL model fare against

state-of-the-art choice models on real-world choice data?

2. Is the assortment optimization problem computationally tractable under the click-based MNL

model? In particular, can we develop efficient algorithmic methods despite the absence of an explicit

combinatorial structure on the customers’ consideration sets and ranking preferences?
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1.1. Problem formulation

In what follows, we formally describe the click-based MNL model and formulate its corresponding

assortment optimization problem. We consider a setting where a retailer has access to a collection

of n items. Each item i is associated with a selling price of ri, an MNL-based preference weight of

wi, and a consideration probability of λi. Given the assortment S ⊆ [n], the customers’ purchasing

decisions are made in two steps:

1. Generating a consideration set. First, a random subset CS ⊆ S is generated, by independently

picking each item i ∈ S with probability λi. We refer to CS as the (random) consideration set

induced by the assortment S, whose total weight is denoted by w(CS) =
!

i∈CS
wi.

2. Picking from the consideration set. For any given realization of the consideration set CS, a

single representative customer makes a purchase from among this subset according to the MNL

choice model. Namely, each item i ∈CS is chosen with probability wi
1+w(CS)

, while the no-purchase

option is chosen with the residual probability, 1
1+w(CS)

.

In order to define the expected revenue function, let π(i, S) be the probability of picking item i,

given that the assortment S is offered. Based on the preceding discussion, this purchase probability

is clearly zero when i /∈ S. In the more interesting scenario when i ∈ S, the latter probability can

be written as

π(i, S) = Pr [i∈CS] ·E
"

wi

1+w(CS)

#### i∈CS

$
= λi ·E

"
wi

1+wi +w(C−i
S )

$
, (1)

where the expectation above is taken over the randomness in generating the consideration set CS,

with the shorthand notation C−i
S =CS \{i}. The objective is to identify an assortment S ⊆ [n] that

maximizes the resulting expected revenue R(S) =
!

i∈S ri · π(i, S). This assortment optimization

formulation is termed the click-based MNL assortment problem, for short.

Related choice models. It is worth noting that the click-based MNL model can be viewed as a

special case of the classical mixed-MNL model with exponentially many customer segments. More

specifically, in Appendix A, we present a formal description of how any click-based MNL model

can be converted to an equivalent mixed-MNL model. Unfortunately, this connection provides

little practical value, as the reduction requires specifying a mixed-MNL model over 2n customer

segments, meaning that existing algorithms for the assortment problem under the mixed-MNL

cannot be efficiently applied to these instances. It is worth observing that even with polynomially

many segments, the mixed-MNL-based assortment optimization problem is known to be Ω(n1−ε)-

hard to approximate, as shown by Désir et al. (2014).

As explained in the literature review of Section 1.3, highly structured special cases of the click-

based MNL model have surfaced in the recent literature. For example, the random consideration
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set model introduced by Manzini and Mariotti (2014) and studied by Gallego and Li (2017) can be

viewed as a limiting case of the click-based MNL where the second-stage choice decisions follow a

single ranking over the items.1 In fact, the model of Gallego and Li (2017) is a special case of the

Markov chain choice model (Blanchet et al. 2016). In contrast, our hardness result of Section 2.1

implies that, conditional on the standard complexity assumption P ∕= NP , it is not possible to

represent an instance of the click-based MNL model as an equivalent polynomially sized instance

of the Markov chain model. The latter property implies a clear separation between the click-based

MNL model in its general form and special cases examined in earlier literature.

To summarize, while our modeling approach is related to choice models studied in previous

literature, these connections cannot be exploited to efficiently solve the click-based MNL assortment

problem. As we proceed to show in this paper, the probabilistic structure of the consideration sets

creates fundamental challenges that require new technical insights and algorithmic tools.

1.2. Main contributions

This paper studies the application of the click-based MNL model to assortment optimization, both

at a fundamental algorithmic level and in practice. In terms of theory, we tightly characterize

the computational status of the resulting assortment optimization problem. We show that this

problem is NP-hard even for very basic click-based MNL settings. On the positive side, we develop a

polynomial-time approximation scheme (PTAS), showing that provably near-optimal assortments

can be efficiently computed. This result builds on the development of algorithmic and probabilistic

tools to approximate the outcomes of independent Bernoulli trials, representing how customers’

clicks generate random consideration sets. We believe that this fundamental contribution may find

applications in additional revenue management problems.

Beyond our theoretical investigations, we demonstrate the significance of our modeling approach

for practitioners. Through a collaboration with the online retailer Alibaba, we have acquired large-

scale data sets describing customers’ purchase history on mobile platforms, where a customized

selection of products is displayed to end users. These data sets come as close as possible to those

in use by data science teams in leading retail platforms (scale, feature engineering, data quality,

etc.). We develop a practical estimation strategy that pieces together the use of clickstream data,

machine learning methods, and maximum-likelihood estimation. We demonstrate that utilizing the

click-based MNL model leads to noticeable improvements over MNL and mixed-MNL models in

1 Any instance of the model by Gallego and Li (2017) can be efficiently reduced to an instance of click-based MNL
assortment problem, while losing only an O(ε)-fraction of the optimal revenue, for every ε≥ 0. The model of Gallego
and Li (2017) is based on the assumption that the customers’ second-stage decisions follow a strict preference ranking
σ : [n] → [n]. By instantiating the click-based MNL model with preference weights wσ(n) = 1/ε and wσ(i) = (1/ε) ·
wσ(i+1) for every i∈ [n− 1], it is not difficult to show that the expected revenue function of the resulting click-based
MNL model approximates that in Gallego and Li (2017) up to an O(ε)-factor.
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term of prediction accuracy, while dramatically reducing the computational cost of the estimation

process.

In what follows, we present our contributions in greater detail, with pointers to the relevant

sections. We conclude by discussing the managerial implications of our work.

Hardness results and estimation of choice probabilities. In Section 2.1, we show that assortment

optimization under the click-based MNL model is NP-hard, by relating this setting to the well-

known set partition problem. Our reduction shows that the former problem is intractable even when

there is only one item whose inclusion in the consideration set is random, whereas all remaining

items are deterministically included. That said, as a preliminary indication that the click-based

MNL model can still be rigorously analyzed, we show in Section 2.2 that the expected revenue R(S)

of a given assortment S ⊆ [n] can be efficiently estimated. Specifically, even though the screening

phase of this two-stage choice model generates a distribution over exponentially-many consideration

sets CS, we devise a fully polynomial time approximation scheme (FPTAS) for computing the

choice probabilities π(i, S).

Approximation scheme. Our main algorithmic contribution comes in the form of a polynomial

time approximation scheme (PTAS) for the assortment optimization problem. Formally, for any

accuracy level ε> 0, our algorithm constructs an assortment whose expected revenue is within a

factor of 1− ε of optimal, running in O(n
O( 1

ε4
log 1

ε )) time, as shown in Sections 2.3 and 4. At a high-

level, our algorithmic approach proceeds from a distinction between two regimes of parameters:

unlikely items corresponding to low click probabilities, and likely items corresponding to high click

probabilities. Our algorithm builds on the intuition that assortment optimization becomes easier

to handle when each of these settings is studied independently of the other. For unlikely items,

the probability that two items are simultaneously considered is small, and thus, the substitution

effects are limited. From an algorithmic standpoint, this means that, in this regime, the assortment

problem can be approximately “linearized” to obtain knapsack-like formulations. In contrast, for

likely items, products have non-negligible probabilities of being clicked on. Here, the instance

structure is closer in spirit to that of a standard MNL-assortment optimization problem, and

therefore, we utilize a revenue-ordered-like policy. Going from this intuition to a rigorous analysis

requires significant technical developments, culminating in enumeration schemes and stochastic

inequalities between sums of independent Bernoulli variables using Poisson-distributed surrogates,

which may be of broader interest. For ease of exposition, we devote Section 3.1 to a thorough

discussion of our algorithmic approach.

Practical implementation. In view of its running time guarantees, our approximation scheme

still requires certain enhancements to be readily implemented in practice. Hence, in Section 5, we

distill these ideas into three practical algorithms, ranging from a simple greedy heuristic to an
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enhanced version of our PTAS that can also handle cardinality-constrained instances. We then

conduct an extensive set of numerical experiments in which we test the efficacy of these approaches

on randomly generated instances consisting of 20 to 125 products. In this setting, for instances with

40 or fewer products, the optimal assortment can be recovered via a complete enumeration over

all feasible assortments. We find that all three approaches recommend assortments that are within

1% of optimal on average; however only the aforementioned greedy heuristic and our PTAS admit

practical running times. Concurrently, we examine instances with a number of products ranging

from 80 to 125 to show that our PTAS can be employed on instances of practical scale. We observe

that our PTAS admits running times that are under a minute on average, even when the algorithm

is executed with a small accuracy level (ε≤ 5%).

Case study on Alibaba’s data. In Section 6, we conduct a case study that focuses on quantifying

the value of clickstream data in choice modeling settings. We make use of real historical sales data

from Tmall.com, one of Alibaba’s largest online marketplaces that connects third party-sellers

to customers. At a high level, customers landing on any particular seller’s homepage are often

presented with an option to select a discount coupon. Upon clicking on this coupon, the customer

is transferred to a coupon sub-page that contains six products, each of which can be purchased at

a discount using the acquired coupon. For the top ten sellers (traffic-wise) across Tmall.com, our

data set consists of all information related to the clicks and purchases of every customer landing

on a coupon sub-page over a two-week selling period. Beyond these records, our data set includes

a collection of 25 feature values associated with each offered product.

We benchmark the click-based MNL model against the standard MNL and mixed-MNL models.

The latter choice models are estimated via standard maximum likelihood estimation (MLE) meth-

ods. Similarly, for the click-based MNL model, the utility parameters of the second-stage MNL

instance are estimated using standard MLE. On the other hand, the prediction of click probabili-

ties can be cast as a binary classification problem. As such, we leverage generic machine learning

algorithms to estimate its click probabilities.

Consequently, we measure the fitting accuracy of these models through their respective out-of-

sample log-likelihoods. We ultimately find that the click-based MNL yields 0.5% to 2.5% improve-

ments in fitting accuracy. Given the connection between the mixed-MNL and click-based MNL

models (see Appendix A), the magnitude of these gains is quite striking, and suggests that click

behavior seems to provide a useful signal for the subset of products considered by customers. It

is worth observing that the click-based MNL model also has an advantage from a computational

standpoint. The estimation of click-based MNL models runs in less than 20 minutes, while the

estimation of mixed-MNL models exceeds three hours.
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We also study the extent to which the click-based MNL model leads to assortment recommenda-

tions that differ from those of the MNL model. Using semi-synthetic instances based on Alibaba’s

choice data, we show that the cost of a model misspecification can be significant. This notion

quantifies the loss of revenue incurred by using an MNL-optimal assortment in place of an assort-

ment that is optimal for the click-based MNL model, when the latter is the ground truth. To

keep the paper as concise as possible, this empirical study is presented in the online companion

(Appendix EC.4.3).

Managerial implications. While our empirical findings are tied to a specific application domain,

our research generates managerial insights that could benefit retail platforms more broadly. Recent

literature in revenue management has focused on developing increasingly sophisticated approaches

to capture heterogeneity in customers’ choice behavior using latent processes. This line of work

is exemplified by choice models such as mixed-MNL, Markov chain, and classical consideration

set-based models. In the context of the mixed-MNL model, the segment of the population to which

a customer belongs is never explicitly observed in the data. Similarly, for the Markov chain model,

the path of product substitutions followed by a customer before reaching to an offered product

or to the no-purchase option serves to parametrize the customers’ rankings, albeit not being an

observable signal in practice. Lastly, as discussed in Section 1.3, the probabilistic structure of how

consideration sets are formed is generally inferred from the final choices made by customers in the

second stage of the choice making process.

In contrast, our work promotes a different path towards capturing customers’ heterogeneity: We

propose the use of clickstream data to explicitly define and estimate the customers’ heterogeneous

consideration sets. Surprisingly, this approach is competitive from a predictive standpoint even

against mixed-MNL models, a family known to approximate any desired random-utility maximiza-

tion choice model, while being much less costly to estimate. In other words, once customers whittle

down the offered assortments to a small number of options, the ranking decisions over clicked prod-

ucts are sufficiently well-captured by a simple choice model such as MNL. As shown in previous

literature, capturing latent heterogeneity comes at a substantial cost in terms of estimation and

computation. For example, estimating Markov chain models over a large universe of featurized

products remains an open question. Instead, the estimation of click-based models can be efficiently

parametrized and easily combined with machine learning methods. The main takeaway for choice

modeling practitioners and researchers is that data generated by customers during their search pro-

cess (clickstream data) provide powerful signals to estimate their heterogeneous preferences. We

believe that the conceptual simplicity of click-based MNL makes it a good candidate to fulfill this

approach in data science practice.
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1.3. Related work

In this section, we review directly related research, with a primary focus on papers that utilize

consideration sets in modeling customers’ purchasing patterns. This body of work includes assort-

ment optimization formulations that incorporate an initial phase of consideration set formation, in

addition to those that study operational decisions under consideration-set-based choice models.

Traditional assortment optimization. In the most well-studied version of the assortment opti-

mization problem, the underlying choice model governing customer purchasing patterns falls under

the random utility maximization (RUM) framework. In such models, customers associate a random

utility with all offered products, and purchase the highest utility product. The most widespread

RUM choice models under which assortment optimization problems have been considered include

the MNL model (Talluri and van Ryzin 2004, Rusmevichientong et al. 2010, Davis et al. 2013), the

nested logit model (Davis et al. 2014, Gallego and Topaloglu 2014, Feldman and Topaloglu 2015b),

and the mixed-MNL model (Désir et al. 2014, Feldman and Topaloglu 2015a).

As previously mentioned, one apparent downside of these traditional RUM models is the under-

lying assumption that each customer considers purchasing all offered products. In reality, as noted

by Gilbride and Allenby (2004), customers generally narrow down the products they are willing

to consider based on prominent product features such as brand or price. Then, from among this

smaller consideration set of products, the customer makes a purchasing decision.

Assortment optimization with consideration sets. The notion of a consideration set was first

introduced by Howard and Sheth (1969); since then, numerous papers have found empirical evidence

in support of this model for customer purchasing behavior (Lapersonne et al. 1995, Hauser and

Wernerfelt 1990, Shocker et al. 1991, Mehta et al. 2003, Hauser 2014). Silk and Urban (1978),

for example, measures the average size of consideration sets for everyday items such as laundry

detergent, yogurt, and coffee; they find that this average size is generally between 2 and 8 products.

To our knowledge, the first to implicitly incorporate the notion of consideration sets within

assortment optimization were Honhon et al. (2012). Here, the customer population is partitioned

into classes, each distinguished by a unique preference list that describes a ranking on some subset

of the available products. An arriving customer from a particular class will purchase the highest

ranked offered product that appears on her respective preference list. Honhon et al. (2012) show

that, when each preference list corresponds to a path in a binary tree of products, the assort-

ment optimization problem can be recast as a shortest path problem. Aouad et al. (2020) build

on this work by providing a general dynamic programming framework to efficiently compute opti-

mal assortments under ranking-based models with various structural assumptions. Jagabathula

and Rusmevichientong (2016) expand this version of the ranking-based model by adding a price

threshold to the characterization of each customer class. In this setting, customers belonging to
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a particular class only consider purchasing products in their preference list that are priced below

their respective price threshold. Feldman and Topaloglu (2018) consider an assortment optimiza-

tion problem along similar lines, in which customers first form their consideration set based on

some product feature threshold, and then make a purchase according to the MNL choice model.

A very recent work with certain common features to the present paper is that of Gallego and

Li (2017), who consider assortment optimization under a ranking-based random consideration set

model initially proposed by Manzini and Mariotti (2014). In this model, customers first form a

random consideration set through a process that mirrors that of the click-based MNL model,

namely, each product i ∈ [n] is independently included in the customer’s consideration set with

probability λi. However, once the consideration set has been formed, customers are assumed to

make a purchase according to a single universal ranking over all products. In other words, out of

the products offered, customers purchase the highest ranked one from this single universal ranking

that appears in their consideration set. Gallego and Li (2017) show how to formulate the MLE

problem induced by this model as a mixed-integer nonlinear program, and provide a simple heuristic

approach for computing local optima. Additionally, they prove that revenue-ordered assortments

are optimal when the universal ranking contains no ties among products. When ties are allowed,

the authors propose a 1
2
-approximation.

As explained in Section 1.1, any instance of the ranking-based model of Gallego and Li (2017) can

be casted into an instance of the click-based MNL model, while preserving the expected revenue of

any assortment and its related choice probabilities within any degree of accuracy. This statement

holds even with ties between products, meaning in particular that we obtain a polynomial-time

approximation scheme for this case as well. Furthermore, one fundamental difference between the

model of Gallego and Li (2017) and our current work is that a single universal ranking cannot

sensibly utilize click behavior as a proxy for the set of products that will be considered by customers.

To verify this claim, consider a very simple setting, where we have only two products and only

two sales data points. For both data points, both products were clicked. However, the first data

point specifies that product 1 was purchased, while the second data point reveals that product 2

was purchased. Clearly, there is no universal ranking and consideration probabilities that lead to

a non-zero likelihood for these two purchase events.

Turning the spotlight to papers that are directly motivated by e-commerce setting, Davis et al.

(2015), Aouad and Segev (2020), and Gallego et al. (2020) consider how to optimally rank products

that are relevant to a particular search query. Problems in this spirit have also been considered

by Wang and Sahin (2017), Chu et al. (2020) and Derakhshan et al. (2018), who associate an

explicit search cost for each product being considered. In this setting, the typical assumption is

that products placed higher up on the displayed results page (i.e., ranked higher) are more likely to
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be clicked or purchased. Consequently, such choice models indirectly describe a certain distribution

over consideration sets, each corresponding to a subset of top ranked products. This way, one

captures the notion that customers start their search from the top result and generally proceed

sequentially through the list of displayed results until their patience expires.

Data-driven operations management. Finally, our work contributes to a growing stream of

research that leverages the increasing availability and granularity of historical data to inform oper-

ational decisions, such as those related to data-driven inventory management (Kunnumkal and

Topaloglu 2008, Huh and Rusmevichientong 2009, Huh et al. 2011, Huh and Rusmevichientong

2009, Ban and Rudin 2019) and feature-based pricing (Cohen et al. 2020, Javanmard and Naz-

erzadeh 2019, Qiang and Bayati 2016). In the context of demand prediction, machine learning

methods have gained wide popularity, given their ability to leverage data from a wide variety of

sources to enhance their predictive efficacy. For example, Farias and Li (2019) have shown that the

recovery of customer preferences via matrix completion techniques can be accelerated using com-

prehensive sources of customer-product interactions, such as clicks on products, clicks on the “like”

button, inclusions to the shopping cart, etc. However, more accurate predictions do not necessarily

yield more effective decisions. For example, Feldman et al. (2018) conducted a pilot study, com-

paring two algorithmic approaches for selecting the set of products displayed to customers landing

on Alibaba’s online marketplaces. Despite benefiting from additional features and achieving more

accurate predictions, the current practice, based on sophisticated machine learning methods such

as regularized logistic regression and gradient boosted decision trees, falls short against a standard

MNL-based formulation, in terms of revenue performance. This study illustrates the value of a

modeling framework that accurately captures key decision tradeoffs, such as product substitution

effects. From this perspective, our modeling approach can be viewed as a way of augmenting the

classical MNL choice model using clickstream data.

2. Main Theoretical Results

In what follows, we present our main theoretical results regarding the click-based MNL assortment

problem. We first prove in Section 2.1 that this computational problem is NP-hard even in seemingly

simple settings. In Section 2.2, we present our main algorithmic result in simplified form, by

providing an efficient approximation scheme for the click-based MNL assortment problem under

two auxiliary assumptions. Section 4 will be dedicated to showing how these assumptions can be

completely eliminated, thus attaining a PTAS for the assortment problem in its utmost generality.

2.1. Hardness result

In what follows, we prove that the assortment optimization problem, as formally defined in Sec-

tion 1.1, is NP-hard. Our approach leverages ideas that are similar in spirit to the reduction
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proposed by Feldman and Topaloglu (2018) for an MNL-based choice model with nested considera-

tion sets. To this end, we focus on the feasibility version of the former problem, where an additional

revenue threshold K is specified. The goal of the assortment feasibility problem is to decide whether

there exists an assortment with an expected revenue of at least K.

Theorem 1. The assortment feasibility problem is NP-complete.

The proof is based on a reduction from set partition, which is one of Karp’s 21 NP-complete

problems (Karp 1972). This reduction is presented in Appendix B.1. Interestingly, we map the

set partition instances to click-based MNL settings in which all products are clicked on with

probability 1, except for a single product, which is clicked on with probability 1/2. Hence, this

construction proves that the computational hardness streams from the basic probabilistic structure

of the click-based MNL choice model, where the customer’s random consideration set is formed

through independent Bernoulli random variables.

2.2. FPTAS for computing choice probabilities

In addition to the computational hardness of the assortment optimization problem, the challenges

surrounding the click-based MNL model start with the estimation of its customers’ choice proba-

bilities. Indeed, each assortment S induces a distribution over 2|S| consideration sets, each of which

occurs with positive probability. Therefore, computing the choice probability π(i, S) of an item i

in any given assortment S is by no means straightforward, and we are not aware of any efficient

method for computing π(i, S) in an exact way. Nevertheless, as stated in the next claim, this quan-

tity can be deterministically estimated within any degree of accuracy in polynomial time. In what

follows, we let wmin and wmax denote the minimal and maximal MNL weights, respectively.

Theorem 2. For any ε ∈ (0,1), there is a deterministic O(n
2

ε
· log(nwmax

wmin
)) time algorithm that

computes an estimate π̃(i, S) for the choice probability π(i, S) satisfying

π(i, S)≤ π̃(i, S)≤ (1+ ε) ·π(i, S) .

To establish Theorem 2, we formulate in Appendix B.2 an approximate dynamic program that

estimates the purchase probabilities up to a factor of 1+ε. In this formulation, items are sequentially

processed in an arbitrary order with a state variable describing the cumulative preference weights

of all items considered before reaching the current state. In the remainder of the paper, we use the

dynamic programming method of Theorem 2 as a black-box to estimate the choice probabilities

under the click-based MNL model. This positive result provides an initial indication that the

click-based MNL assortment problem may be computationally tractable, despite the NP-hardness

reduction stated in Section 2.1.
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2.3. Approximation scheme in a simplified setting

Here, we discuss our main algorithmic result for the click-based MNL assortment problem. We

begin by stating a couple of structural assumptions regarding the click-based MNL instance in

question. These assumptions allows us to focus on a slightly more structured setting that simplifies

the design of an approximation scheme. We emphasize that these assumptions are by no means

required; we explain in Section 4 how to bypass them using additional algorithmic ideas.

Structural assumptions. Let ε > 0 be an extra input parameter to our approximation scheme,

standing for its desired accuracy. For every integer p, we denote by Λp the collection of items i∈ [n]

with a consideration probability λi ∈ [ε · (1+ ε)p, ε · (1+ ε)p+1). Similarly, for every integer q≥ 1, we

denote by Wq the collection of items i∈ [n] with a preference weight wi ∈ ( ε
n
· (1+ ε)q−1, ε

n
· (1+ ε)q],

while W0 = {i∈ [n] :wi ≤ ε
n
} is the collection of remaining items.

Assumption 1. For every (p, q)∈Z×Z+, each item i∈Λp∩Wq has a consideration probability

of exactly λi = ε · (1+ ε)p and a preference weight of exactly wi =
ε
n
· (1+ ε)q.

Assumption 1 essentially states that the click probabilities {λi}i∈[n] and preference weights {wi}i∈[n]

take values in a restricted set that explicitly depends on the accuracy parameter ε> 0. It is not

difficult to see that Assumption 1 can be enforced by slightly rounding the input parameters.

However, this approach requires us to analyze how slight modifications of the parameters affect the

expected revenue function. In other words, a sensitivity analysis is a crucial ingredient to justify

Assumption 1. We provide such line of analysis in Section 4, where we present our approximation

scheme for the click-based MNL assortment problem in full generality.

Our second assumption imposes further restrictions on the range of indices q for which the weight

class Wq is non-empty. Here, Qmin is the minimal index q ∈ Z+ for which Wq ∕= ∅ and let Qmax be

the maximal such index.

Assumption 2. There are only O( 1
ε2

· logn) non-empty weight classes, meaning that Qmax −

Qmin =O( 1
ε2
· logn).

The above assumption restricts our attention to a setting we refer to as the bounded-ratio regime.

Intuitively, the bounded-ratio property ensures that there is limited variability in the preference

weights of the underlying products, specifying that the ratio between extremal preference weights

wmax
wmin

is polynomially bounded with respect to the number of items n. Clearly, this condition is

likely to be satisfied by instances encountered in practice. Nevertheless, we develop in Section 4

algorithmic methods for the assortment optimization problem in its utmost generality, without the

bounded-ratio assumption.
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Main algorithmic result. Focusing on the setting described by Assumptions 1 and 2, we present

our main algorithmic result. One notable nuance is that the algorithm we devise constructs a

random assortment, rather than a deterministic one. In other words, the assortment decision is

sampled from a distribution over assortments; this random experiment is independent from the

customer’s purchasing decision, as prescribed by the click-based MNL choice model. Moreover,

we restrict attention to the class of decomposable assortments, which are generated by specifying

a certain probability for each product to be included in the assortment or not. That is, given a

sequence of independent Bernoulli random variables B = (B1, . . . ,Bn), the realization of the decom-

posable assortment B is given by S = {i∈ [n] :Bi = 1}. In what follows, we denote probabilities and

expectations with regards to this distribution by PrS∼B[·] and ES∼B[·], respectively. Furthermore,

we denote by S∗ an optimal (deterministic) assortment, which is fixed throughout our exposition.

With these definitions at hand, we next state our main theorem.

Theorem 3. Suppose that Assumptions 1 and 2 are satisfied. For any ε> 0, we can determine

a decomposable assortment B such that ES∼B[R(S)]≥ (1− ε) ·R(S∗). Our algorithm runs in time

O(n
O( 1

ε4
log 1

ε )).

The theoretical significance of Theorem 3 resides in showing that the click-based MNL assortment

problem can be approximated within any degree of accuracy, when Assumptions 1 and 2 are in

place. At this stage, it is important to point out that decomposable assortment decisions (as stated

in Theorem 3) can be derandomized via the standard method of conditional expectations (Alon

and Spencer 2016, Chap. 16). For completeness, we explain in Appendix B.3 how to convert any

decomposable assortment B into a deterministic assortment S without any loss in optimality. We

devote Section 3 to an exposition of the algorithmic approach used to establish Theorem 3.

3. Proof of Theorem 3: Algorithmic Approach

In what follows, we present our approximation scheme for the click-based MNL assortment problem,

as stated in Theorem 3. While its performance guarantee is formally established in Appendix D,

here, we develop the main technical insights that motivate our algorithmic approach. For ease of

exposition, we begin by providing a technical outline of this approach.

3.1. Technical outline

Decomposition method. The starting point of our algorithm is to decompose the collection of

items based on the magnitude of their consideration probabilities. Let Pmin be the minimal index

p∈Z for which Λp ∕= ∅ and let Pmax be the maximal such index. For simplicity of notation, we use

Q= [Qmin,Qmax], with {ax}X as an abbreviation for {ax}x∈X .

With this notation at hand, we distinguish between unlikely and likely items:
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• An item i∈ [n] is said to be unlikely if λi ∈ [0, ε]. Thus, the unlikely items are precisely those in

classes {Λp}[Pmin,0]. For every q ∈Q, we will use Uq =
%

p∈[Pmin,0]
(Λp ∩Wq) to denote the set of

unlikely items with a preference weight of wq = ε
n
· (1 + ε)q. In addition, Nunlike =

%
q∈QUq will

denote collection of all unlikely items.

• An item i ∈ [n] is said to be likely if λi ∈ (ε,1]. The likely items are precisely those in classes

{Λp}[Pmax]. Consequently, Nlikely =
%Pmax

p=1 Λp will denote the collection of all likely items.

In what follows, we explain why the distinction between unlikely and likely items is very useful

in approximating the click-based MNL assortment problem. The main implication of this decom-

position is that we develop a specialized algorithm for each subset of items Nunlike and Nlikely. In

particular, we argue that each of these two regimes (unlikely and likely items) have distinctive

properties that simplify the formation of near-optimal assortment decisions.

Sketch of the approximation scheme. For the unlikely items, we argue that the click-based MNL

assortment problem can be approximately linearized and consequently cast as amin-knapsack prob-

lem. The corresponding algorithm, referred to as MinKnapsack(·), is described in Section 3.2. For

the likely items, we introduce the property of revenue-ordered by class assortments, which is shown

to be satisfied by optimal assortments. By exploiting this property, we argue that likely items can

be selected using a greedy procedure. The corresponding algorithm, referred to as Greedy(·), is

described in Section 3.3. Finally, in Section 3.4, we provide a succinct summary of our approxi-

mation scheme, which combines MinKnapsack(·) and Greedy(·); we also discuss its computational

performance.

Guessing of input parameters. Each of the specialized algorithms MinKnapsack(·) and Greedy(·)

requires us to specify certain input parameters. Intuitively, these parameters serve to coordinate

both algorithms and to capture a first-order approximation of how the optimal assortment S∗

is structured. To this end, for every q ∈ Q, we define c∗q =
!

i∈S∗∩Uq
ri · π(i, S∗) as the revenue

contribution of the class of items Uq in the optimal assortment S∗. Similarly, for every (q, p) ∈

Q× [Pmin, Pmax], we define c
∗
p,q =

!
i∈S∗∩Wq∩Λp

ri ·π(i, S∗) as the revenue contribution of the class of

items Wq∩Λp. In addition, for every S ⊆ [n] and q ∈Q, let α(S, q) =E[ wq

1+wq+w(CS)
] be the coefficient

of the class of items Uq in the assortment S. While the meaning of these coefficients will be revealed

later on, these quantities will be critical to approximate the choice probabilities of unlikely items.

Clearly, the quantities {(c∗q ,α(S∗, q)}Q and {c∗p,q}[Pmax]×Q are not known to our algorithm since

they depend on the optimal assortment S∗. Nevertheless, our specialized algorithms will use input

parameters that “closely approximate” these quantities. To be specific, MinKnapsack(·) is executed

with input parameters {(ĉq, α̂q)}Q as a proxy for {(c∗q ,α(S∗, q)}Q, and Greedy(·) is executed with

{ĉp,q}[Pmax]×Q as a proxy for {c∗p,q}[Pmax]×Q.
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At first glance, it is unclear how we may efficiently “guess” these input parameters. Indeed,

from a computational standpoint, there are exponentially many possible values for {(ĉq, α̂q)}Q
and {ĉp,q}[Pmax]×Q. However, the important observation is that the number of input parameters is

relatively small, i.e., |Q|=Qmax−Qmin+1=O( 1
ε2
· logn) by Assumption 2, and Pmax =O( 1

ε
· log 1

ε
)

since the consideration probabilities of likely items are within the range (ε,1]. Thus, basic counting

arguments show that the input parameters can be tuned by enumerating over polynomially many

vectors, as formally stated in the next claim, whose proof is deferred to Appendix C.1. In what

follows, we use L= |Q| · (Pmax +1) for ease of notation.

Claim 1. There is an efficiently constructible collection of input parameters Ω with |Ω| =
O(n

O( 1
ε4

log 1
ε )) such that there exists ({ĉq, α̂q}Q,{ĉp,q}[Pmax]×Q)∈Ω satisfying:

1. ĉp,q ≤ c∗p,q < ĉp,q +
2ε
L ·R(S∗) for every (p, q)∈ [Pmax]×Q ,

2. ĉq ≤ c∗q < ĉq +
2ε
L ·R(S∗) for every q ∈Q ,

3. (1− ε)2 · α̂q ≤ α(S∗, q)≤ (1− ε) · α̂q for every q ∈Q .

The above claim states that by enumerating over Ω, we will consider in particular input parameters

{ĉq, α̂q}Q and {ĉp,q}[Pmax]×Q that closely approximate {(c∗q ,α(S∗, q)}Q and {c∗p,q}[Pmax]×Q. Indeed,

Property 1 and 2 ensure that the revenue contribution parameters are accurate, while Property 3

ensures that the coefficient parameters are accurate; the latter have a slight negative bias that is

required in our subsequent analysis.

3.2. Algorithm for unlikely items

We begin by providing technical insights and intuition about our approach for handling unlikely

items. In particular, we explain why the assortment decisions over Nunlike can be approxi-

mately captured as min-knapsack problems. Next, we formally describe the resulting algorithm

MinKnapsack(·).
Linearization ideas. Let us focus our attention on the class of unlikely items Uq with a preference

weight of wq. Generally speaking, the tradeoff in assortment decisions is between generating “more

revenue” by selecting additional items and mitigating the “cannibalization” of the items’ choice

probabilities. In what follows, we argue that this tradeoff can be approximately formulated through

an instance of the min-knapsack problem.

We first focus on the “cannibalization” component in the above tradeoff. Based on representa-

tion (1) of the choice probabilities, for every assortment S ⊆ [n] and item i∈ S, we have:

π(i, S) = λi ·E
"

wi

1+wi +w(C−i
S )

$
.

Intuitively, the amount of “cannibalization” exerted by the items S \ {i} on item i’s choice proba-

bility scales with the random variable w(C−i
S ). To be specific, the quantity E[ wi

1+wi+w(C−i
S

)
] is convex
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non-increasing with respect to w(C−i
S ). The items of S ∩Uq have a total contribution to w(C−i

S ) of

exactly wq · |C−i
S∩Uq

|. Here, the random variable |C−i
S∩Uq

| is a sum of independent Bernoulli outcomes,

representing the number of items considered amongst S ∩Uq other than item i.

The main technical insight for unlikely items is that the distribution of |C−i
S∩Uq

| can be approxi-

mated using a single summary statistic, which is its expectation E[|C−i
S∩Uq

|]. This surprising insight

proceeds from the next lemma, showing that sums of independent Bernoulli outcomes are “well-

approximated” by Poisson surrogates. In what follows, for λ∈ [0,1], we denote by P (λ) a Poisson

random variable with parameter λ. Two random variables Z1 and Z2 are said to be in the convex

non-increasing order Z1 ≽cni Z2 if, for every convex non-increasing function φ, we have E[φ(Z1)]≥

E[φ(Z2)], provided these expectations exist (Shaked and Shanthikumar 2007, Chap. 3).

Lemma 1 (Poissonization). Suppose that ε ∈ [0,
√
2− 1]. Let Y =

!k

i=1Xi where {Xi}[k] are

independent Bernoulli random variables with success probabilities {λi}[k] ∈ [0, ε]k. Letting λ =
!k

i=1 λi, we have P (λ)≽cni Y ≽cni P ((1+ ε) ·λ).

This claim shares similarities with the Poissonization method (Le Cam 1960). That said, rather than

using a concentration inequality with respect to a Poisson limiting distribution, our proof proceeds

from basic properties of stochastic orders, which are presented in Appendix C.2. An important

requirement of Lemma 1 is that the success probabilities of the Bernoulli random variables are at

most ε, which is in perfect alignment with the consideration probabilities of the unlikely items.

Based on Lemma 1, we will be able to argue that the cannibalization effects due to the assortment

decisions S ⊆ Uq can be “mitigated” by ensuring that E[|CS∩Uq |] is sufficiently small, noting that

E[|CS∩Uq |] and E[|C−i
S∩Uq

|] are ε-close from each other. Moreover, the summary statistic E[|CS∩Uq |] =
!

j∈S∩Uq
λj is a linear function with respect to the assortment decisions S ∩Uq.

Next, we turn our attention to the “revenue” component in the above-mentioned tradeoff. How

do we quantify the revenue contribution of an individual unlikely item? By equation (1), in order

to compute the choice probability π(i, S) for an item i ∈ S ∩Uq, we need to estimate the quantity

E[ wi

1+wi+w(C−i
S

)
], which clearly depends on the assortment S and the precise values of q ∈ Q and

p∈ [Pmin,0] that govern the values of wi and the distribution of w(C−i
S ), respectively. Interestingly,

in the next claim, we argue that the dependency on p ∈ [Pmin,0] plays a minor role for unlikely

items. To this end, recall that α(S, q) = E[ wq

1+wq+w(CS)
] is the coefficient of the class of items Uq in

the assortment S, a quantity that only depends on S and q.

Lemma 2. For all S ⊆ [n] and i∈ S ∩Uq, we have (1− ε) ·π(i, S)≤ λi ·α(S, q)≤ π(i, S).

The proof is provided in Appendix C.3. Consequently, the contribution of items i ∈ S ∩ Uq to

the expected revenue E[R(S)] is well-approximated by the expression
!

i∈S∩Uq
riλi · α(S, q). The
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important observation is that, should we use the input parameter α̂q as a constant proxy for

α(S, q), the resulting expression
!

i∈S∩Uq
riλi · α̂q is linear with respect to S. This linearization of

the revenue contribution (i.e., viewing the coefficient α̂q as fixed rather than dependent on the

assortment decisions) will be justified in our subsequent analysis.

All in all, the above observations suggest that the assortment decisions within Uq can be approx-

imated by a min-knapsack problem with the following linear objective and constraint: Minimize

E[|CS∩Uq |] by selecting S∩Uq subject to
!

i∈S∩Uq
riλi · α̂q ≥ ĉq, where α̂q > 0 is the chosen coefficient

for the class of items Uq and ĉq ≥ 0 is the desired revenue contribution from this class of items.

Here, the minimization of E[|CS∩Uq |] allows us to mitigate the cannibalization effects, while the

linear constraint
!

i∈S∩Uq
riλi · α̂q ≥ ĉq ensures that a sufficient revenue contribution is generated.

Algorithm for unlikely items. To summarize the above discussion, we formally present our special-

ized algorithm MinKnapsack(·), which proceeds by solving a collection of min-knapsack problems.

Here, for every q ∈Q, we assume that a coefficient α̂q and a revenue contribution ĉq for the class

of items Uq are given according to the enumeration procedure of Claim 1. Given these parameters,

the algorithm MinKnapsack(·) constructs a decomposable assortment Bunlike over the collection of

unlikely items, i.e., Bunlike = MinKnapsack({(ĉq, α̂q)}Q).

First, for each q ∈ Q, we solve the following min-knapsack instance: Find a subset of items

U ⊆ Uq that minimizes E[|CU |] =
!

i∈U λi subject to the linear constraint
!

i∈U γi ≥ (1−ε) · n
ε
, where

γi = ⌊nλiriα̂q

εĉq
⌋. To gain some insight into the latter constraint, note that by eliminating floors, it can

be rearranged as α̂q ·
!

i∈U riλi ≥ (1−ε) · ĉq. Hence, the constraint precisely ensures that the desired

revenue contribution of ĉq is approximately generated by the items U ⊆ Uq. From a computational

perspective, the min-knapsack instance constructed above can be solved to optimality in O(n
2

ε
)

time via dynamic programming since the γi-parameters are integral and upper-bounded by n
ε
; e.g.,

see Vazirani (2013, Chap 8.1).

Now, let Uq ⊆ Uq be the resulting optimal subset of items; if the min-knapsack instance is

infeasible, we simply pick Uq = ∅. Next, we define the decomposable assortment Bq, where each

item i∈Uq is independently picked with probability 1− ε; namely, Bq = (Bq
i )i∈Uq is a collection of

IID Bernoulli random variables with probability of success of 1− ε. Finally, our algorithm returns

the decomposable assortment Bunlike, defined by concatenating the assortments Bq over q ∈Q.

3.3. Algorithm for likely items

We now turn our attention to consider likely items. We explain why the optimal assortment deci-

sions over Nlikely can be approximated using a greedy procedure. Next, we formally describe the

resulting algorithm Greedy(·).
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Revenue-ordered property. Following Assumption 1, we establish a generalized revenue-ordered-

like property for the click-based MNL assortment problem. We say that an assortment S is revenue-

ordered by class if, for every class Wq ∩Λp, the subset S ∩Wq ∩Λp consists of the |S ∩Wq ∩Λp|
highest-revenue items in Wq ∩Λp, breaking ties arbitrarily.

Lemma 3. There exists an optimal assortment S∗ which is revenue-ordered by class.

It is worth observing that, although we subsequently make use of Lemma 3 to develop an algorithm

for likely items, the revenue-ordered by class property holds for all items, irrespective of whether

they are likely or unlikely. The proof is presented in Appendix C.4. We next describe how this

property is utilized from an algorithmic perspective. Suppose that we are given the desired revenue

contribution ĉp,q ≥ 0 within each class of likely items Wq ∩ Λp. By Lemma 3, higher price items

should always be offered before lower price items within each class. Consequently, our algorithm

exploits this observation by greedily selecting items within each class of items Wq ∩Λp by order

of decreasing prices, until reaching the desired revenue contribution ĉp,q. This greedy approach is

described in formal terms next.

Algorithm for likely items. Suppose that a revenue contribution ĉp,q is given for each class of

likely items Wq ∩Λp. We also assume that the decomposable assortment Bunlike over the unlikely

items is already determined using the algorithm MinKnapsack(·) of Section 3.2. Given these inputs,

the algorithm Greedy(·) constructs a decomposable assortment Blikely over the set of likely items,

i.e., Blikely = Greedy({ĉp,q}[Pmax]×Q,Bunlike).

Starting from the decomposable assortment Bunlike, by order of decreasing revenues, we greedily

add a single likely item from any class Λp ∩Wq that violates the following termination criterion.

Specifically, the algorithm terminates when, for every class Λp ∩Wq, either we have added all of

its items, or discover that the items already chosen from Λp ∩Wq contribute at least (1− ε) · ĉp,q
to the expected revenue. Here, the customers’ choice probabilities are estimated using the FPTAS

of Theorem 2 with an accuracy level of ε. To sum-up, the algorithm Greedy(·) proceeds as follows:
1. We start with S0 = ∅.
2. Given St, our algorithm halts if the following termination criterion is met: For every p∈ [Pmax]

and q ∈ [Qmin,Qmax], either St ∩Λp ∩Wq =Λp ∩Wq or

&

i∈St∩Λp∩Wq

ri ·ES∼Bunlike
[π̃(i, S ∪St)]≥ (1− ε) · ĉp,q . (2)

Otherwise, let Λp ∩ Wq be a class for which this criterion does not hold. Letting it be the

maximum price item in (Λp ∩Wq) \St, we define the next assortment as St+1 = St ∪ {it}.
3. Let ST be the assortment obtained in step 2, at the last iteration T . Our algorithm returns the

decomposable assortment Blikely = (Bi)i∈ST
, where each Bi is a Bernoulli random variable with

a probability of success of 1.
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Additional remarks. From a computational perspective, the number of iterations in step 2 is at

most n, and thus, this algorithm makes O(n2) calls to the FPTAS of Theorem 2 to estimate the

choice probabilities, which results in an overall running time of O( 1
ε2
· n4 logn) by Assumption 2.

It is important note that this FPTAS was devised for deterministic assortments, while Greedy(·)
generates decomposable assortments. That said, our FPTAS is equally applicable to decomposable

assortments using the derandomization method described in Appendix B.3.

3.4. Summary of the approximation scheme

We are now ready to fully describe our approximation scheme for the click-based MNL assortment

problem in the setting of Theorem 3. This algorithm proceeds in three steps:

1. Generate the collection of input parameters Ω.

2. For every ({ĉq, α̂q}Q,{ĉp,q}[Pmax]×Q)∈Ω:

(a) Compute Bunlike = MinKnapsack({(ĉq, α̂q)}Q).
(b) Compute Blikely = Greedy({ĉp,q}[Pmax]×Q,Bunlike).

3. Return the decomposable assortment B =Bunlike ∪Blikely of maximum expected revenue out of

those generated in Step 2.

Hence, this approximation scheme combines our specialized algorithms for unlikely and likely items

in Steps 2(a) and 2(b). In Sections 3.2 and 3.3, we have provided technical insights and intuitive

explanations as to why these specialized algorithms, MinKnapsack(·) and Greedy(·), are employed

for each class of items. This line of reasoning is formalized in Appendix D, where we rigorously show

that the resulting decomposable assortment B indeed satisfies the guarantees stated in Theorem 3,

i.e., ES∼B[R(S)] = (1−O(ε)) ·R(S∗).

From a computational standpoint, our algorithm runs in O(n
O( 1

ε4
log 1

ε )) time. Indeed, as explained

in Sections 3.2 and 3.3, Steps 2(a) and 2(b) are very efficient for every instantiation of the input

parameters, with an overall running time of O( 1
ε2
·n4 logn). Thus, the main computational bottle-

neck comes from the enumeration over all input parameters in Ω. Specifically, the running time

bound of Theorem 3 immediately follows from the upper bound on |Ω| established in Claim 1.

This computational analysis suggests that our algorithmic approach could potentially be inef-

fective in practice in terms of speed. Nevertheless, we will demonstrate in Section 5 that practical

variants of our enumeration strategy can be implemented at very large scale, while preserving our

performance guarantees. Before delving into a computational study of our approximation scheme,

we explain in Section 4 why Assumptions 1 and 2 can be considered without loss of generality.

4. Approximation Scheme in a General Setting

To complete our theoretical investigation of the click-based MNL assortment problem, we explain

how to relax Assumptions 1 and 2 and derive an unconditional polynomial-time approximation

scheme. Hence, our most general algorithmic result is stated in the following theorem.
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Theorem 4. For every ε> 0, we can compute an assortment S such that R(S)≥ (1−ε) ·R(S∗).

The running time of our algorithm is O((n
ε
)
O( 1

ε4
log 1

ε )).

Theorem 4 states that there exists a polynomial-time approximation scheme for the click-based

MNL assortment problem, without any assumption whatsoever. As such, this result tightly com-

plements the NP-hardness result presented in Section 2.1, and quite surprisingly holds for arbitrary

instances of the problem. Due to lengthy technical details, the proof of Theorem 4 is presented in

Appendix EC.2 of the online companion. At a high level, our line of reasoning shows that, given an

instance of the click-based MNL assortment problem, we can construct a nearly equivalent instance

in which Assumptions 1 and 2 are satisfied, and thus, the algorithmic approach of Theorem 3 is

applicable. In the remainder of this section, we heuristically describe the main ingredients of this

proof.

Informal proof ideas. As mentioned in Section 2.3, eliminating Assumption 1 requires a careful

sensitivity analysis. Note that the choice probabilities prescribed by the click-based MNL model

can be expressed as polynomials of degree n with respect to the parameters {λi}i∈[n] by expanding

the probabilities associated with distinct realizations of the consideration set CS. At first glance,

this functional form is not well-behaved with respect to small perturbations of the consideration

probabilities {λi}i∈[n]. That said, we able to derive strong sensitivity bounds by exploiting the

probabilistic structure of the choice model.

In what follows, we outline our sensitivity analysis of the expected revenue function. Suppose

we are given preference weights {wi}i∈[n] and consideration probabilities {λi}i∈[n] that possibly

violate Assumption 1. Recall that, for every integer p, we define Λp as the collection of items i∈ [n]

with a consideration probability λi ∈ [ε · (1 + ε)p, ε · (1 + ε)p+1), and, for every integer q ≥ 1, Wq

is the collection of items i ∈ [n] with a preference weight wi ∈ ( ε
n
· (1 + ε)q−1, ε

n
· (1 + ε)q], while

W0 = {i ∈ [n] : wi ≤ ε
n
}. Next, we slightly round these parameters in order to conform them with

Assumption 1. Namely, for each item i, its rounded weight w̃i is defined as w̃i =
ε
n
· (1 + ε)q if

wi ∈Wq for some q ≥ 1, and w̃i =
ε
n
if wi ∈W0. The rounded consideration probability λ̃i of each

item i is defined by λ̃i = ε · (1+ ε)p, where p∈Z is the unique index for which λi ∈Λp. Finally, the

rounded selling price of item i is set to r̃i =
wi
w̃i

· ri.
How does this rounding procedure affect the click-based MNL assortment problem? To answer this

question, let R̃(·) denote the expected revenue function with respect to the rounded inputs {λ̃i}i∈[n],

{w̃i}i∈[n] and {r̃i}i∈[n]. For every assortment S ⊆ [n], we consider the decomposable assortment BS,

where each item i∈ S is picked with probability 1− ε whereas items i∈ [n]\S are not picked at all.

The next claim establishes our sensitivity bounds for R̃(S) with regards toR(S) and ES′∼BS [R(S′)].

Lemma 4. For every S ⊆ [n], we have (1− 2ε) ·R(S)≤ R̃(S)≤ (1+ 3ε) ·ES′∼BS [R(S′)].
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This claim implies that the click-based MNL assortment problem is well-behaved with respect

to our alterations of the input parameters. Indeed, given an α-approximation S̃ of the modified

instance, the corresponding decomposable assortment BS̃ satisfies

E
S′∼BS̃ [R (S′)]≥ (1− 3ε) · R̃(S̃)≥ (1− 3ε)α · R̃(S∗)≥ (1− 5ε)α ·R(S∗) ,

where the first and last inequalities immediately follow from Lemma 4. Hence, restricting attention

to modified instances, which satisfy Assumption 1, results in only an O(ε) loss of optimality.

The missing piece to complete the proof of Theorem 4 is to argue that the bounded-ratio regime

(Assumption 2) can be similarly enforced with a negligible loss of optimality. The proof ideas here

are significantly more complex. Unlike Assumption 1, we are not aware of any simple transforma-

tion that makes arbitrary instances compatible with the bounded-ratio setting, while preserving

optimality up to an O(ε) factor. Our approach is to decompose the original instance of the click-

based MNL assortment problem into independent subproblems that satisfy Assumption 2. This

decomposition is achieved by means of dynamic programming. We refer the interested reader to

Sections EC.1 and EC.2 of the online companion, where the formal proof of Theorem 4 is presented.

5. Computational Experiments

In this section, we implement our PTAS on a wide variety of randomly generated test instances

with up to 125 products. Additionally, we distill the ideas and findings of our PTAS into two

heuristic approaches for the assortment problem under the click-based MNL model.

5.1. Instance generator

We randomly generate cardinality-constrained instances of the click-based MNL assortment prob-

lem with n∈ {20,30,40}. Specifically, we enforce that each recommended assortment must include

exactly six products. The motivation for the addition of this constraint is two-fold. First, in many

e-commerce settings, product recommendation pages are composed of displays that consist of a

fixed number of products. This is the case, for example, in the Alibaba discount coupon setting

considered in Section 6.1, where Alibaba is tasked with presenting personalized six product dis-

plays of discounted products to arriving customers. Second, by enforcing this exact cardinality

constraint, we limit both the total number of feasible assortments to
'
n
6

(
, and the number of of

potential consideration sets to 26 for any fixed assortment. As such, when n is reasonably small,

i.e. n≤ 40, we can use a complete enumeration over all feasible assortments to recover the optimal

assortment, which enables us to report an exact optimality gap as our measure of each recom-

mended assortment’s profitability. Additionally, we conduct a separate set of experiments with

n ∈ {80,100,125} to demonstrate that our PTAS scales to instances with large n. The prices,

weights and consideration probabilities of each product are generated as follows:
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• Prices: For each item i ∈ [n], we generate ri from a log-normal distribution with location 0 and

scale σ ∈ {0.1,0.5}. Let rmin and rmax be the respective smallest and largest prices generated for

a particular instance.

• Preference weights: The preference weight of item i is set to wi = eαw−βwri , where αw = rmin ·βw

and we vary βw ∈ {0.5,1,2,4}.

• Consideration probabilities: We first compute unnormalized consideration probabilities λ′
i =

eαc−βcri for items i ∈ [n], and then set the true consideration probability of item i to be λi =

0.1 · (λ′
i/
!

j∈[n] λ
′
j). We set αc = βc · rmin and we vary βc ∈ {0.5,1,2,4}.

We choose αw and αc as described above to ensure that the preference weights and click probabilities

do not vary too widely. Furthermore, the scaling of the consideration probabilities is motivated by

the idea that click-through rates are generally quite small in e-commerce settings. For example,

in Section 6.3 we fit click-based MNL models to historical click/sales data from Alibaba and find

that the predicted click probabilities never exceed 0.1.

This set-up allows us to characterize each test case through a particular configuration of the four

parameters (n,σ,βw,βc). Since we vary n ∈ {20,30,40}, σ ∈ {0.1,0.5}, and βw,βc ∈ {0.5,1,2,4},

there are a total of 96 unique test cases. For each test case, we generate 20 unique streams of prices,

which ultimately yields 1,920 distinct assortment problem instances to consider. We solve each of

these instances using the three approaches detailed next.

5.2. Tested algorithms

In this section, three algorithms are developed in order to compute assortment recommendations

for the click-based MNL instances generated in Section 5.1. The first is a version of our PTAS

that we mold to the cardinality constrained instances at-hand. It is important to note that this

updated version of our approximation scheme continues to generates ε-optimal assortments in a

polynomial running time. In addition, we devise two heuristic approaches that draw inspiration

from our PTAS to varying degrees, but come with no performance guarantees.

Each of the three algorithms begins with rounding the preference weights, revenues, and consid-

eration probabilities, as described in Section 4. Consequently, the items are partitioned into the

classes Λp ∩Wq, where p∈ [Pmin, Pmax] and q ∈ [Qmin,Qmax]. In what follows, since we are choosing

assortments consisting of six products, the choice probabilities can be computed exactly for every

assortment by enumerating over all 26 consideration sets.

Coupon Display PTAS. Our first approach is a slightly modified variant of our PTAS that is

adapted to the cardinality constrained setting that we consider, the full details of which can be

found in Appendix EC.3.1. We demonstrate that this implementation incurs running times that are

less than a minute on average, even for the instances in which n= 125. These results demonstrate
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that our PTAS scales to problems of typical size as seen in related literature; see, for example, the

recent numerical studies of Bertsimas and Mǐsić (2019), Berbeglia et al. (2018), and Désir et al.

(2020). The PTAS was implemented in Java 1.8 on an Intel Core i5 with 3.2GHz CPU and 32GB

of RAM.

Greedy heuristic. This approach is motivated by the revenue-ordered by class property high-

lighted in Section 3.2. Specifically, we have shown that there exists an optimal assortment S∗

that picks the |S∗ ∩Λp ∩Wq| largest revenue products in Λp ∩Wq, for every p ∈ [Pmin, Pmax] and

q ∈ [Qmin,Qmax]. We develop a greedy heuristic that constructs assortments satisfying this revenue-

order-by-class property, by iteratively adding the product that generates the largest marginal

increase in the expected revenue. More formally, we initially start with an empty assortment S0 = ∅,

and in each step, we add exactly one product to our assortment until the required capacity of

6 products is reached. Using St to denote our current assortment, we construct the collection

of candidate assortment St+1 = {St ∪ {it,p,q} : p ∈ [Pmin, Pmax], q ∈ [Qmin,Qmax]}, where it,p,q is the

largest revenue product out of (Λp ∩Wq) \St. Consequently, we define St+1 = argmaxS∈St+1
R(S).

Ultimately, our heuristic returns the assortment S6 hence defined. It is worth noting that, since

Alibaba is required to display precisely 6 products, items are added up until reaching this capacity,

even if the expected revenue decreases. The greedy heuristic was implemented in Python 3.6 on an

Intel Core i5 with 3.2GHz CPU and 32GB of RAM.

SAA heuristic. This approach uses a popular simulation-optimization technique, known as sam-

ple average approximation (SAA); see, for example, the paper by Kleywegt et al. (2002). In this

approach, for each product i ∈ [n], we first generate K samples C1
[n]\{i}, . . . ,C

K
[n]\{i} of the random

consideration set C[n]\{i}, which are utilized as follows. For every assortment S ⊆ [n], we use

λiriwi ·
1

K

&

k∈[K]

1

1+wi +w(S ∩Ck
[n]\{i})

as an approximation of the expected revenue contribution of product i ∈ S. Hence, for a fixed

collection of sampled consideration sets, our goal is to solve the following nonlinear integer program:

max
x∈F

&

i∈[n]

λiriwixi ·

)

* 1

1+wi +
!

j∈Ck
[n]\{i}

wjxj

+

, , (3)

where F = {x∈ {0,1}n :
!

i∈[n] xi = 6} denotes all feasible six-product assortments. It is not difficult

to reformulate the latter problem (3) as a linear integer program (SAA-IP), which is presented in

Appendix EC.3.2. This heuristic was implemented in Python 3.6 on an Intel Core i5 with 3.2GHz

CPU and 32GB of RAM; all integer programs were solved in Gurobi 6.5.1.
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5.3. Results

In this section, we compare the performance of the three algorithms described above, by varying the

accuracy level ε∈ {0.05,0.04,0.03}. For the remainder of this section, we use PTAS as a shorthand

for the updated approximation scheme, GR for the greedy heuristic, and SAA for the SAA-based

integer programming approach. Furthermore, for each algorithm A ∈ {PTAS,GR,SAA}, let SA

be the assortment returned by algorithm A, and let S∗ be the optimal assortment. We define the

optimality gap of algorithm A for a single instance as R(S∗)−R(SA)

R(S∗) , and we drop from our analysis

all “easy” instances deemed to be those for which all of the tested approaches recover the optimal

assortment.

We begin by noting that we were unable to carry out SAA for all problem instances due to

prolonged running times for solving (SAA-IP), which occurred even when this integer program was

formulated withK = 20 samples. For example, when ε= 0.05, there were test cases for which it took

upwards of 25 minutes to solve (SAA-IP). Nevertheless, we carried out a smaller set of experiments

to give some insight into the performance of SAA, where we varied n ∈ {20,30}, σ ∈ {0.1,0.5},
and βw,βc ∈ {0.5,1,2}, and then generated only 10 problem instances for each test case. Table 1

shows the average optimality gap and running time of SAA and GR. These results show that

GR universally dominate SAA on the instances considered; producing significantly more profitable

assortments in fractions of the running time.

Avg. % Opt. Gap Avg. Running Time (s)
n ε GR SAA GR SAA
20 0.05 0.25 1.06 0.0037 31.08
20 0.1 0.70 1.11 0.0037 24.38
30 0.05 0.23 1.20 0.0059 193.79
30 0.1 0.76 2.98 0.0059 131.05

Table 1 Results of smaller experiments, which show the

relative performance of SAA

Given the discussion above, we only analyze the performance of PTAS and GR on the full testbed

of instances. The results for this full set of experiments are presented in Table 2, where columns

3 and 4 respectively show the average optimality gaps of PTAS and GR over all test instance.

Furthermore, columns 5 and 6 show the largest optimality gaps of both approaches across all test

cases. This statistic is meant to gives a sense of the worst-case performance of PTAS and GR.

Finally, columns 6 and 7 present the average running times of PTAS and GR over all instances.

With only a superficial scan of the results in Table 2, it is clear that both PTAS and GR are

quite efficacious. For example, when ε= 0.05, both approaches have average optimality gaps below

0.25%. Furthermore, it is important to remember that the optimality gaps reported in Table 2
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Avg. % Opt. Gap Max. % Opt. Gap Avg. Running Time (s)
n ε PTAS GR PTAS GR PTAS GR
20 0.03 0.012 0.14 1.66 11.79 0.040 0.0038
20 0.04 0.026 0.16 1.53 11.79 0.029 0.0037
20 0.05 0.065 0.21 3.91 11.79 0.022 0.0037
30 0.03 0.015 0.13 1.29 6.41 0.39 0.0060
30 0.04 0.022 0.18 1.29 6.41 0.26 0.0060
30 0.05 0.063 0.21 4.27 6.41 0.17 0.0060
40 0.03 0.014 0.15 0.68 6.53 1.61 0.0084
40 0.04 0.030 0.20 1.22 6.53 1.00 0.0084
40 0.05 0.082 0.24 4.47 6.53 0.61 0.0084

Table 2 Optimality gaps and running times of GR and PTAS

n Avg. Running Time (s)
80 11.73
100 25.20
125 51.53

Table 3 Performance of PTAS

for instances with large n and

ε= 0.05.

are pessimistic measures of performance, since these metrics are computed after ignoring instances

where both PTAS and GR recover the optimal assortment. Interestingly, we also observe that

PTAS appears to be more robust than GR in terms of its worst case performance. More specifically,

when ε= 0.03, PTAS had a worst-case optimality gap of 1.66% compared to the 11.79% observed

for GR. Hence all-in-all, it seems that PTAS provides the best balance between fast running times

and high quality assortments. That said, GR is a suitable alternative for massive-scale e-commerce

applications, where the computational requirements can be very restrictive. Finally, we note that

the results seen in Table 3 indicate that PTAS can scale to instances with 125 products, finishing

on average in less than a minute when ε= 0.05.

6. Case Study with Alibaba Sales Data

In this section, we present a case study in which we fit click-based MNL models and mixed-MNL

models to historical sales and click data from Alibaba, a Chinese online and mobile commerce

company that has recently surpassed Walmart as the world’s largest retailer (Lim 2016). Our

primary goal is to understand and quantify the benefits of using click behavior as a proxy for the

set of products considered by each customer. First, we demonstrate that utilizing the click-based

MNL model leads to significant improvements over the mixed-MNL model in term of prediction

accuracy. Moreover, the computation time needed to fit the click-based MNL is multiple orders

of magnitude smaller than the time required to fit the mixed-MNL models. Next, we quantify
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the revenue impact of model misspecification, which occurs when the presumed choice model does

not match the model that governs reality. Specifically, we consider the profitability of assortment

decisions made under an MNL model, when a click-based MNL model is in fact the ground truth.

The assortment instances we consider are generated using the MNL and click-based MNL models

that were fit to the Alibaba sales data. All-in-all, our results indicate that click behavior provides

a strong signal for the set of products ultimately considered by customers, and hence, a choice

model that incorporates this behavioral premise will likely capture customer purchasing patterns

more accurately.

Outline. We begin in Section 6.1 by presenting the exact retailing setting at Alibaba, as consid-

ered in our case study, which is followed by an inclusive summary of the available historical sales

data in Section 6.2. Then, we describe in Sections 6.3 and 6.4 the methods employed to fit both

the click-based MNL model and the mixed-MNL model respectively. The fitting accuracies of these

two models are benchmarked against each other as well as a standard MNL model in Section 6.5.

It is worth noting that we also conduct semi-synthetic experiments to study the cost of model

misspecification, where the assortment recommendation of the MNL and click-based MNL models

are compared in terms of revenue. To keep the paper concise, these results are presented in the

online companion, Appendix EC.4.3.

6.1. General setting

The sales data presented in this section were collected at Tmall.com, one of Alibaba’s largest

online marketplaces that connects third-party sellers to customers. More specifically, Tmall.com

is China’s largest third-party business-to-consumer platform for branded goods, such as Nike and

Adidas. Throughout this section, the term “seller” refers to any business that offers its products

on the marketplace considered.

Customers arriving to the front page of Tmall.com can then navigate to seller-specific pages,

which only offer products sold by that particular seller. Upon visiting a particular seller’s front page,

the customer can acquire a seller-specific coupon by clicking on a coupon icon at the top of that

page. Clicking this icon brings the customer to a “coupon sub-page” that contains a personalized

display of six products, each of which can now be purchased at a discount price. Alibaba selects the

six products to display with the goal of maximizing the aggregate revenue generated by coupon-

claiming customers. As formalized in Appendix EC.4.3, this decision is analogous to an assortment

optimization problem. Figure 1 demonstrates how a customer progresses from a seller’s front page

to the coupon sub-page and finally to the six displayed products. For each customer who arrives

to one of these coupon sub-pages, our data set includes the set of offered products as well as the

subset of products clicked and ultimately purchased by that customer.
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Figure 1 The process of landing of the seller-specific coupon sub-page

6.2. Available sales data

In what follows, we describe the sales data shared by Alibaba. We begin by discussing the make-up

of the available historical sales data used to fit our customer choice models.

Seller statistics. Alibaba provided us with two weeks of sales data acquired from the top-10 sellers

on Tmall.com in terms of overall traffic. Due to confidentiality agreements, the precise identities of

these sellers cannot be revealed. Table 4 provides key sales statistics for each of these ten sellers,

including the category of products sold by the particular seller in addition to information on the

number of products clicked and purchased over the two week selling horizon. The rightmost column

of this table specifies the conversion rate, which is the fraction of customers who arrived to a

coupon sub-page with six displayed products and who made a purchase. Typically, in the context

of e-commerce, this statistic is between two and five percent, which is precisely what we observe. It

should be noted that, since multiple products were purchased in approximately 0.01% of customer

visits, the conversion rate does not exactly evaluate to the number of purchases (column five)

divided by the number of customer arrivals (column six).

Available sales data. For each seller, we letN = {1, . . . , n} be the set of all potential products that

could be displayed on coupon sub-pages (column three in Table 4). Further, we assume the sales

data is composed of historical sales data from τ customers (column six). To help unclutter notation,

we do not indicate the dependency of N and τ on the specific seller, even though these quantities

clearly differ from one seller to another, as indicated in Table 4. For each arriving customer t, we

denote by St ⊆N the set of six displayed products, where each product i∈ St is stored as a vector
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Seller Product Category # products # clicks # purchases # customers conversion %
1 Electronics 169 8,338 2,045 41,765 4.88
2 Men’s Apparel 1,047 11,508 1,956 213,678 0.88
3 Diapers 132 10,296 2,979 90,467 3.01
4 Bed Linens 115 6,975 1,767 39,494 4.43
5 Perfume 103 32,535 8,478 131,822 6.16
6 Women’s Apparel 501 7,267 2,127 63,466 3.23
7 Furniture 49 4,949 1,937 33,579 5.75
8 Cooking Appliances 82 4,220 1,448 40,108 3.59
9 Women’s Apparel 118 17,792 2,163 139,853 1.49
10 Cooking Appliances 38 3,376 2,180 37,925 5.75

Table 4 Key seller statistics

of representative feature values Xit. More specifically, we use the 25 features with the highest

importance scores according to the machine learning approaches utilized by Alibaba’s engineers

for demand estimation purposes. Among these top 25 features are product-specific features such

as price, the image quality of the associated picture displayed to each customer, and various

measures of historical click-through rates and customer sentiment towards the product as reflected

by past reviews. In addition, we use customer-specific features such as the given customer’s spending

and total number of products added to the shopping cart both in the last week and in the last

month. Beyond these rather straightforward product/customer features, we also have access to joint

features that are specific to each customer and product pair. For example, one such joint feature

is a collaborative filtering score, that takes into account past purchase and click behavior from

the given customer and other customers who are deemed to have similar purchasing preferences to

compute a single score signifying the extent to which the particular product will appeal towards

the particular customer. Once again, due to confidentiality agreements, we cannot disclose the

complete list of all 25 features.

The sales data for each customer t can be described by a 4-tuple (St,Xt,Clickt, zt), where Xt =

{Xit : i ∈ St} specifies the feature values of each offered product, Clickt = {cit ∈ {0,1} : i ∈ St} is

the subset of displayed products that were clicked, and zt indicates the purchased product. When

customer t did not make a purchase, we set zt = 0; in the rare event that k ≥ 2 different products

were purchased during a single visit, we create k copies of the 4-tuple (St,Xt,Clickt, zt), one for

each of the unique values for zt. With regards to Clickt, we set cit = 1 if product i∈ St is clicked by

customer t, and cit = 0 otherwise. Within the scope of our click-based MNLmodel, for each customer

t, we assume that CSt = {i∈ St : cit = 1}. In other words, we use the click events to indicate whether

each product in the displayed assortment is part of the given customer’s consideration set. For each

seller, we represent the full set of historical sales as PurchaseHistory = {(St,Xt,Ct, zt) : t= 1, . . . , τ}.
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6.3. Fitting the click-based MNL model

In this section, we describe the methods used to estimate the parameters of the click-based MNL

using maximum likelihood estimation (MLE). To begin, for each seller, we randomly select 75% of

its sales data to be used for fitting the choice models and hold-out the remaining 25% of the data

to test the accuracy of these models. Stated more concisely, we employ a 75/25 train/test split of

the sales data. We then combine the training data for each seller and use this aggregated data set

to seed the MLE problem. Once the optimal sets of parameters have been derived, we measure

the accuracy of the fitted model using the log-likelihood computed on the testing sets of each of

each individual seller. The series of steps described above – 75/25 train/test split, solving the MLE

problems, computing the log-likelihood on the test data sets – make up what we refer to as a single

trial. We ultimately report the average out-of-sample log-likelihood for each seller over 20 trials.

Model parameterization. Under the MNL model, the random utility that customer t associates

with product i ∈ St is given by Uit = Vit + εit, where Vit is the known deterministic component of

this utility and εit is an i.i.d. Gumbel random variable that captures heterogeneity in the customer

population. In order to incorporate product and customer features, one can write the deterministic

component as a linear combination of the feature values, meaning that Vit = βTXit, where Xit is the

vector of feature values that customer t associated with product i∈ St. In this case, the probability

that customer t purchases product i∈ St is given by

π (i, St,Xt) =
eβ

TXit

1+
!

j∈St
eβ

TXjt
,

whereas the no-purchase option is selected with probability

π (0, St,Xt) =
1

1+
!

j∈St
eβ

TXjt
.

Having fully described the second stage of our click-based MNL model, we now formalize the initial

consideration set formulation step. Initially, we assume that the click probabilities do not depend

on the feature sets of arriving customers. As a result, we let λi be the probability Pr[cit = 1] that

any given customer t clicks on product i∈ St. We use λ= {λi : i∈N} to denote the set of all click

probabilities.

With this notation, we formulate the log-likelihood, written as a function of PurchaseHistory,

under the click-based MNL model as follows.

LL (β,λ|PurchaseHistory)

= log

)

*
τ-

t=1

)

*
-

i∈CSt

λi

-

i∈St\CSt

(1−λj)

+

,π (zt,CSt ,Xt)

+

,
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=
τ&

t=1

)

*
&

i∈CSt

logλi +
&

i∈St\CSt

log (1−λi)

+

,+
τ&

t=1

log (π (zt,CSt ,Xt))

=
τ&

t=1

)

*
&

i∈CSt

logλi +
&

i∈St\CSt

log (1−λi)

+

,+
τ&

t=1

)

*βTXztt − log

)

*1+
&

i∈CSt

eβ
TXit

+

,

+

, . (4)

Therefore, the MLE problem of interest, used to derive estimates of the feature weights β and the

click probabilities λ, is given by:

max
λ∈[0,1]n,β

LL (β,λ|PurchaseHistory) . (MLE Click)

Clearly, given the log-likelihood function in (4), the MLE problem decomposes into independent

optimizations problems over the weights β and click probabilities λ. Hence, (MLE Click) can be

rewritten as:

max
λ∈[0,1]n,β

LL (β,λ|PurchaseHistory) = max
λ∈[0,1]n

τ&

t=1

)

*
&

i∈CSt

logλi +
&

i∈St\CSt

log (1−λi)

+

,

+max
β

τ&

t=1

)

*βTXztt − log

)

*1+
&

i∈CSt

eβ
TXit

+

,

+

, .

Solving the MLE problem. Fortunately, the problem of finding the optimal feature weights β∗ is

exactly an MLE problem under the standard MNL model, which is a well-known convex optimiza-

tion problem (see Chapter 3 of Train (2009)). To numerically solve this problem, we use Tensorflow

(Abadi et al. 2015), through which we implement a highly optimized version of stochastic gradient

descent. Since the click probabilities follow a multinomial distribution, it is easy to verify that

the optimal click probabilities are given by λ∗
i =

!τ

t=1 cit/
!τ

t=1 i∈St . In other words, each optimal

click probabilities λ∗
i is merely the empirical click probabilities, i.e., the proportion of customers

who clicked product i out of those to whom this product was offered.

While this closed-form expression for λ∗ is easy to compute, its accuracy in reflecting the true

click probabilities will critically depend on the amount of available click data. Since the majority

of the sellers we consider carry over 100 products, we are estimating over 100 click probabilities. In

light of this characteristic of our setting, we find that this version of the click-based MNL model is

significantly outperformed by the classic MNL model, a pattern that is most likely a consequence of

insufficient click data. This insight leads us to develop a more sophisticated procedure for estimating

the click probabilities, in which we featurize the click probabilities and use sophisticated machine

learning methods to understand how these features shape click behaviors.
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Featurized click probabilities. In order to avoid estimating a unique click probability for each

product, we featurize these probabilities with the same set of 25 features that were used to fea-

turize the deterministic utility components Vit for the MNL choice model. More formally, we

assume that the click probabilities take the form λi = g(Xit), where we fit a gradient boosted

classification tree to determine the function g(·). Specifically, we use a Python implementation of

catboost (Prokhorenkova et al. 2018); a new gradient boosting toolkit. Our exact implementation,

which includes the hyperparameters that we tune, is provided in Appendix EC.4.1

6.4. Fitting the mixed-MNL model

The mixed-MNL models are also fit to the historical Alibaba sales data using an MLE-based

approach. To ensure a fair comparison between the mixed-MNL and click-based MNL models, we

utilize the same training and testing sets to fit and assess both model. In what follows, we first

formalize the mixed-MNL model and its corresponding MLE problem. We then describe how we

utilize a sequential fitting procedure to determine the optimal number of customer segments for

each fitted mixed-MNL model.

The mixed-MNL model. Under the mixed-MNL model, the customer population is partitioned

into G customer segments, who each make purchasing decisions according to a unique MNL model.

As such, in our Alibaba setting, the probability that customer t purchases product i ∈ St is given

by

π (i, St,Xt) =
&

g∈[G]

θg ·
eβ

T
g Xit

1+
!

j∈St
eβ

T
g Xjt

,

whereas the no-purchase option is selected with probability

π (0, St,Xt) =
&

g∈[G]

θg ·
1

1+
!

j∈St
eβ

T
g Xjt

.

In the above choice probability expressions, θg and βg respectively signify the arrival probability and

vector of features weights associated with customer segment g. We use θ= {θg : g ∈ [G]} to denote

the set of all arrival probabilities. Finally, it is important to note that these choice probabilities

also reflect the fact that the segment to which each arriving customer belongs is latent, since the

sales data does not reveal this information.

Given the specification described above, the log-likelihood under the mixed-MNL model is as

follows.

LL (β1, . . . ,βG,θ|PurchaseHistory) = log

.
τ-

t=1

π (i, St,Xt)

/

=
τ&

t=1

log

)

*
&

g∈[G]

θg ·
eβ

T
g Xztt

1+
!

j∈St
eβ

T
g Xjt

+

, .
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Therefore, the MLE problem of interest, used to derive estimates of the feature weights β1, . . . ,βG

and the click probabilities θ, is given by:

max
θ∈[0,1]n,β1,...,βG

LL (β1, . . . ,βG,θ|PurchaseHistory) , (MLE MMNL)

with the addition constraint that
!

g∈[G] θg = 1.

Solving the MLE problem and choosing G. We solve problem (MLE MMNL) by directly maxi-

mizing the log-likelihood using MATLAB’s constrained non-linear solver fmincon (MATLAB Opti-

mization Toolbox). Although this log-likelihood function is non-convex, we found that fmincon

generally converged to a local optima.

The optimal number of customer segments is determined by solving problem (MLE MMNL)

in sequential stages, where in stage k, we set G = k. Furthermore, in stage k, we seed the MLE

problem with the optimal estimates from stage k− 1 so as to ensure that the training likelihood

strictly increases as we add more customer segments. To determine when to stop this process, we

employ a train/validate approach that is a common machine learning practice. More specifically,

we split the training set into a smaller training set and a validation data set that will be used to

assess the benefits of additional customer segments. The smaller training set that seeds the MLE

problem now consists of 60% of the data, while the validation set consists of the remaining 15%

that made-up the initial training set. The testing set remains unchanged. In each stage, after fitting

the mixed-MNL as described above, we compute the fitted model’s likelihood on the validation set.

If this validation likelihood is an improvement over the previous stage’s validation likelihood, then

we increment G by one, and move to the next stage. Otherwise, we stop the fitting procedure and

output the fitted model with the highest validation likelihood. We set a time limit of three hours

for fitting each mixed-MNL model, but allow any stage that has commenced to be carried out to

completion before halting the procedure.

6.5. Fitting Accuracy Results

We begin by noting that the three hour time limit allocated to our procedure for fitting the

mixed-MNL models was exhausted in every case, whereas fitting the click-based MNL model never

required more than 20 minutes. In fact, each mixed-MNL model ended up being fit with G = 3

customer segments. To check if the three hour time limit had been too restrictive, we conducted

an addition set of 20 trials, where we lifted the time cap, and fit only mixed-MNL models with

G∈ {1,2,3,4,5}. We present the results of these experiments in Appendix EC.4.2, where it can be

seen that the mixed-MNL models fit with G= 3 was generally the most accurate model, and so

the time limit had little to no effect on the performance of the mixed-MNL fits.

The results for our main set of experiments are presented in Table 5 and Figure 2. These results

provide average measures of fitting accuracy based on 20 trials, where recall that a single trial
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consists of the following three steps: randomly splitting the data into 75/25 train and test sets,

solving the corresponding MLE problem on train data, and computing the out-of-sample log-

likelihood on test data. The first column of Table 5 identifies the seller number and the second

gives the average log-likelihood on the testing set of the fitted click-based MNL. The third and

fourth columns give the percentage improvements of the click-based MNL fits as compared to the

fits of a standard MNL model and the mixed-MNL model.

Log Improvement Improvement
Seller # Likelihood over MNL over mixed-MNL

1 -1791.18 13.21% -0.13%
2 -2369.30 4.86% 1.88%
3 -2920.93 3.11% 0.38%
4 -1595.40 2.66% 2.48%
5 -6633.32 1.92% 0.87%
6 -2070.23 6.80% 0.56%
7 -1667.22 3.25% 0.067%
8 -1295.56 2.74% -0.21%
9 -2468.47 0.99% 0.94%
10 -1698.77 3.44% 1.10%
Table 5 Predictive performance of the fitted models.

Figure 2 Visualization of results from Table 5.

The first salient feature of the results presented in Table 5 is the noticeable improvement of the

click-based MNL over the traditional MNL model. In fact, for eight out of the ten sellers, this
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percentage improvement is at least 2.5%, and even tops 4.8% for Sellers 1,2 and 6. These gains

appear especially impressive in light of other empirical studies that seek to benchmark recently

developed choice models against the MNL model. For example, Aouad et al. (2018) and Şimşek and

Topaloglu (2018) respectively benchmark the Exponomial and Markov chain choice models against

the MNL model, but report gains in out-of-sample likelihood measures of only 1-2%. Second, and

somewhat surprisingly, we observe that the fitting accuracy of the click-based MNL model exceeds

that of the mixed-MNL model for eight of the ten sellers. Moreover, for six of the ten sellers,

these gains exceed 0.5%. Altogether, these results suggest that clickstream data contains valuable

information to refine the predictions of customer choices, and that the click-based MNL seems to

incorporate this information in an effective and efficient manner.
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Appendix A: The Connection between the Click-Based MNL and the Mixed-MNL
Choice Models

The goal of this section is to formalize the connection between the click-based MNL and mixed-MNL models.

More specifically, we first show how to represent any click-based MNL model in terms of an equivalent mixed-

MNL model. We then argue that since the resulting mixed-MNL model requires specifying exponentially

many customer segments, existing approaches for assortment optimization in this context are computational

impractical, except possibly for very small scale instances.

The reduction. To begin, recall that under the mixed-MNL model, the customer population is partitioned

into K customer segments, where each segment k ∈ [K] is associated with an arrival probability θk and a

vector of MNL-based preference weights wk
1 , . . . ,w

k
n. The arrival probability of each customer class can be

interpreted as the fraction of customers belonging to this segment. For a given assortment S ⊆ [n] and item

i∈ S , the choice probability is

π(i, S) =
!

k∈[K]

θk ·
wk

i

1+wk(S)
,

where wk(S) =
"

i∈S
wk

i .

We can convert any click-based MNL model with consideration probabilities {λi}i∈[n] and MNL-based

preference weights of {wi}i∈[n] to an equivalent mixed-MNL model as follows. First, we introduce a customer

segment for each subset of items C ⊆ [n]. The stochastic nature of the consideration set formation phase in

the click-based MNL model is captured by defining the arrival probability of customer segment C as

θC =
#

i∈C

λi ·
#

i/∈C

(1−λi) .

The preference weights for customers of segment C are defined as wC
i = wi if i ∈ C, and wC

i = 0 otherwise.

Under this specification, note that the choice probabilities of item i∈ S is

π(i, S) =
!

C⊆[n]:i∈C

θC · wC
i

1+wC(S)
(5)

=
!

C⊆S:i∈C

$

%
#

j∈C

λj ·
#

j /∈S\C

(1−λj)

&

' · wi

1+w(C)
(6)

= λi ·
!

C⊆S\{i}

Pr
(
C−i

S =C
)
· wi

1+wi +w(C)
(7)

= λi ·E
*

wi

1+wi +w(C−i
S )

+
. (8)

The important observation is that the last expression is exactly the choice probabilities dictated by the

click-based MNL model. Hence the click-based MNL model can be viewed as a parameterized mixed-MNL

model in the sense that its 2n parameters fully specify a mixed-MNL model over 2n customer segments.
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Given that there are a handful of previously developed approaches to tackle the assortment problem under

a mixed-MNL model, it is natural to wonder if any of these algorithms can be combined with our reduction

to attain any non-trivial guarantees for the click-base MNL model. Unfortunately, there is little merit in

this idea due to the fact that the click-based MNL model’s representation as a mixed-MNL model requires

creating 2n customer classes. It is worth observing that even with polynomially many segments, the mixed-

MNL-based assortment optimization problem is known to be Ω(n1−ε)-hard to approximate, as shown by Désir

et al. (2014). Furthermore, the integer-programming-based approach presented by Méndez-Dı́az et al. (2014)

is also not tractable in our setting since the formulation also requires exponentially many decision variables.

Appendix B: Proofs from Section 2

B.1. Proof of Theorem 1

To prove the desired result, we present a reduction from set partition, which is one of Karp’s 21 NP-complete

problems (Karp 1972). Here, we are given a collection of positive integers w1, . . . ,wn. The partition problem

asks whether these numbers can be divided into two subsets, each summing to precisely L= 1
2

"n

i=1wi.

Given a partition instance of this form, we define an instance of the assortment feasibility problem as

follows:

• There are n+1 products.

• For every i∈ [n], the revenue of product i is given by ri = 2. The revenue of product n+1 is rn+1 = 7.

• For every i∈ [n], the preference weight of product i is wi, while that of product n+1 is 4L. In addition,

the no-purchase option is associated with a preference weight of L.

• Each of the products 1, . . . , n has a consideration probability of 1, while product n+1 is considered with

probability 1/2.

• Finally, the expected revenue threshold is K = 3.

In the remainder of this proof, we show that there exists a set of products to offer with an expected revenue

of at least K if and only if there exists a vector x∈ {0,1}n for which
"n

i=1wi xi =L.

We first observe that, since product n+1 has the largest revenue among all products, it is not difficult to

show that offering this product always increases the expected revenue of any set of products. Therefore, the

residual question for the assortment feasibility problem is that of deciding whether one can pick a subset of

the products 1, . . . , n to obtain, along with the preselected product n+ 1, an expected revenue of at least

K = 3. For this purpose, we use the binary vector x= (x1, . . . , xn) to indicate our product choices, meaning

that xi = 1 if product i is offered and xi = 0 otherwise. Letting W (x) =
"n

i=1wixi and recalling that product

n+1 is preselected, the expected revenue of the assortment decisions represented by x can be written as

1

2
· 2W (x)

L+W (x)
+

1

2
· 2W (x)+ 28L

L+W (x)+ 4L
=

W (x)

L+W (x)
+

W (x)+ 14L

5L+W (x)
.

Therefore, there exists a set of products that provides an expected revenue of at least K = 3 if and only if

there exists a vector x∈ {0,1}n for which

W (x)

L+W (x)
+

W (x)+ 14L

5L+W (x)
≥ 3.

The inequality above can equivalently be rewritten as (W (x)−L)2 ≤ 0. Therefore, an expected revenue of

at least K = 3 can be obtained if and only if there exists a vector x ∈ {0,1}n for which W (x) = L, which is

precisely what the partition problem is interested in.
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B.2. Proof of Theorem 2

The probabilistic question. In order to establish this result, we consider a slightly more general setting.

Specifically, let X1, . . . ,Xn be a collection of n independent Bernoulli random variables; we use λi to denote

the success probability of Xi. In addition, let w1, . . . ,wn be non-negative weights, and consider the random

variable W =
"

i∈[n]wiXi. Given β ≥ wmin, we wish to approximately estimate the expectation E[ 1
β+W

].

It is easy to see that addressing the latter question would immediately provide the required estimate for

π(i, S). Indeed, due to representation (1) of the choice probabilities, where we have shown that π(i, S) =

λiwi ·E[ 1

1+wi+w(C−i
S

)
], the connection is made by setting β = 1+wi and W =

"
j∈S\{i}wjXj .

The continuous dynamic program. Now let us first introduce the following notation:

• For an integer 0≤ t≤ n, let Wt =
"

i∈[t]wiXi.

• For α∈ [β,β+
"n

i=t+1wi], let F (t,α) =E[ 1
α+Wt

].

Clearly, our objective is to estimate F (n,β) = E[ 1
β+Wn

] = E[ 1
β+W

]. With this notation, we argue that the

value function F can be expressed in a recursive way:

• Initialization: For t= 0 and α∈ [β,β+
"n

i=1wi], we have F (0,α) = 1
α
.

• General step: For t= 1, . . . , n and α∈ [β,β+
"n

i=t+1wi], we have

F (t,α) = E
*

1

α+Wt

+

= E
*

1

α+Wt−1 +wtXt

+

= Pr [Xt = 1] ·E
*

1

α+Wt−1 +wtXt

,,,,Xt = 1

+

+Pr [Xt = 0] ·E
*

1

α+Wt−1 +wtXt

,,,,Xt = 0

+

= λt ·E
*

1

α+wt +Wt−1

+
+(1−λt) ·E

*
1

α+Wt−1

+

= λt ·F (t− 1,α+wt)+ (1−λt) ·F (t− 1,α) . (9)

It is worth noting that the parameter α is continuous, meaning that the characterization above is still not

an algorithmic result.

Efficient discretization. In order to discretize the continuous dynamic program F , we define an approxi-

mate version F̃ . Here, the parameter α is restricted to the set E , consisting of all numbers in [β,β+
"n

i=1wi]

that can be written as β · (1 + δ)k for some integer k ≥ 0, where δ = ε
2(n+1)

. It is easy to verify that |E|=
O( 1

δ
· log(nwmax

wmin
)) =O(n

ε
· log(nwmax

wmin
)), since β ≥wmin.

To define our modified recursive equations, let ⌊·⌋E be an operator that rounds its argument down to the

nearest number in E . We mention in passing that each occurrence of this operator in the upcoming analysis

is indeed well-defined, due to applying it only to arguments in [β,β +
"n

i=1wi]. With this notation, the

approximate value function F̃ is defined as follows:

• Initialization: For t= 0 and α∈ E , we set F̃ (0,α) = 1
α
.

• General step: For t= 1, . . . , n and α∈ E ∩ [β,β+
"n

i=t+1wi], we set

F̃ (t,α) = λt · F̃ (t− 1, ⌊α+wt⌋E)+ (1−λt) · F̃ (t− 1,α) .
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In the next claim, we show that F̃ (n, ⌊β⌋E) over-estimates F (n,β) by a factor of at most 1+ ε.

Lemma 5. F (n,β)≤ F̃ (n, ⌊β⌋E)≤ (1+ ε) ·F (n,β).

Proof To establish the desired claim, we first show that for every 0≤ t≤ n and α∈ [β,β+
"n

i=t+1wi],

F (t,α)≤ F̃ (t, ⌊α⌋E)≤ (1+ δ)t+1 ·F (t,α) , (10)

by induction on t. The base case is t= 0, where F̃ (0, ⌊α⌋E) = 1
⌊α⌋E

and F (0,α) = 1
α
, clearly indicating that

F (0,α)≤ F̃ (0, ⌊α⌋E)≤ (1+ δ) ·F (0,α).

Now, for the general case of t≥ 1, note that

F̃ (t, ⌊α⌋E) = λt · F̃ (t− 1, ⌊⌊α⌋E +wt⌋E)+ (1−λt) · F̃ (t− 1, ⌊α⌋E)

≥ λt ·F (t− 1, ⌊α⌋E +wt)+ (1−λt) ·F (t− 1,α)

= λt ·E
*

1

⌊α⌋E +wt +Wt−1

+
+(1−λt) ·F (t− 1,α)

≥ λt ·E
*

1

α+wt +Wt−1

+
+(1−λt) ·F (t− 1,α)

= λt ·F (t− 1,α+wt)+ (1−λt) ·F (t− 1,α)

= F (t,α) ,

where the first inequality follows from the induction hypothesis, the second and third equalities hold by

definition of F (t−1, ·), and the last equality is precisely the recursive equation (9). Using similar arguments

in the opposite direction, we have

F̃ (t, ⌊α⌋E) = λt · F̃ (t− 1, ⌊⌊α⌋E +wt⌋E)+ (1−λt) · F̃ (t− 1, ⌊α⌋E)

≤ (1+ δ)t · (λt ·F (t− 1, ⌊α⌋E +wt)+ (1−λt) ·F (t− 1,α))

= (1+ δ)t ·
-
λt ·E

*
1

⌊α⌋E +wt +Wt−1

+
+(1−λt) ·F (t− 1,α)

.

≤ (1+ δ)t ·
-
λt · (1+ δ) ·E

*
1

α+wt +Wt−1

+
+(1−λt) ·F (t− 1,α)

.

≤ (1+ δ)t+1 · (λt ·F (t− 1,α+wt)+ (1−λt) ·F (t− 1,α))

= (1+ δ)t+1 ·F (t,α) .

Based on inequality (10), it follows that F (n,β)≤ F̃ (n, ⌊β⌋E) regardless of the value of δ. In addition, since

we have previously chosen δ= ε
2(n+1)

, an upper bound on our over-estimation error is obtained by observing

that
F̃ (n, ⌊β⌋E)
F (n,β)

≤ (1+ δ)n+1 ≤ e(n+1)·δ = eε/2 ≤ 1+ ε ,

where the last inequality holds since ε∈ (0,1). □
To conclude our proof, it remains to upper bound the number of states needed in order to compute

F̃ (n, ⌊β⌋E). The size of the state space is O(n · |E|), and the approximate value function for each such state

can be evaluated in O(1) time. Consequently, the overall running time is O(n · |E|) = O(n2

ε
· log(nwmax

wmin
)),

precisely as stated in Theorem 2. □
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B.3. Derandomization

Given a decomposable assortment B, we show how to efficiently compute a deterministic assortment Sd ⊆

[n] with an expected revenue of R(Sd) ≥ ES∼B[R(S)]. To this end, we apply the method of conditional

expectation (Alon and Spencer 2016, Chap. 16) with respect to the sequence of random variables (B1, . . . ,Bn).

The idea is to iteratively replace each random variable by one of its possible realizations, without decreasing

the conditional expected revenue in each iteration, given the set of deterministic values chosen thus far.

In order to apply this derandomization method, one should just be able to compute the expected revenue

generated by a decomposable assortment. Indeed, for any binary sequence (b1, . . . , bk)∈ {0,1}k with k ∈ [0, n],

we wish to compute the expected revenue ES∼Bk [R(S)], where Bk = (b1, . . . , bk,Bk+1, . . . ,Bn). In turn, we

are left with the task of computing the choice probability of each item i ∈ [n] under the decomposable

assortment Bk, denoted by ES∼Bk [π(i, S)]. The key observation is that our FPTAS for computing the choice

probabilities with respect to deterministic assortments, described in Theorem 2, can be readily leveraged

to estimate ES∼Bk [π(i, S)]. Indeed, in Claim 2 below, we show that computing the choice probabilities of a

decomposable assortment is equivalent to computing the choice probabilities of a deterministic assortment

with modified consideration probabilities. Specifically, for every item i ∈ [n], we define λ̂i = λi ·Pr [Bk
i = 1].

Henceforth, we denote by π̂(i, S) the choice probability of item i in the assortment S with respect to the

modified consideration probabilities (λ̂1, . . . , λ̂n).

Claim 2. ES∼Bk [π(i, S)] = π̂(i, [n]).

Proof. The equivalence between the choice probabilities proceeds from the observation that:

PrS∼Bk [i∈CS] = λi ·PrS∼Bk [i∈ S]

= λi ·Pr
(
Bk

i = 1
)

= λ̂i

= Pr
/
i∈ Ĉ[n]

0
,

where Ĉ[n] is the consideration set induced by the assortment [n] under the modified consideration probabili-

ties λ̂i. By remarking that I[1∈CS], . . . , I[n∈CS] and I[1∈ Ĉ[n]], . . . , I[n∈ Ĉ[n]] are sequences of independent

Bernoulli random variables, we infer from the above equality that w(C−i
S ) and w(Ĉ−i

[n]) follow the same dis-

tribution when S ∼Bk, for every i ∈ [n]. Hence, based on representation (1) of the choice probabilities, we

obtain that

ES∼Bk [π(i, S)] = PrS∼Bk [i∈CS] ·ES∼Bk

*
wi

1+wi +w(C−i
S )

+

= Pr
/
i∈ Ĉ[n]

0
·E

1
wi

1+wi +w(Ĉ−i
[n])

2

= π̂(i, [n]) .

□
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Appendix C: Proofs from Section 3

C.1. Proof of Claim 1

The proof proceeds by defining the parameters ({ĉq, α̂q}Q,{ĉp,q}[Pmax]×Q) according to the properties stated

in Claim 1. Next, we explain how these parameters can be determined through efficient enumeration.

Defining the input parameters. Let R̂∗ be an under-estimate of the optimal expected revenue R(S∗)

such that R̂∗ ≤R(S∗)≤ 2 · R̂∗. By noting that R({i∗})≤R(S∗)≤ n ·R({i∗}), where i∗ ∈ [n] is the item that

maximizes R({i}), we pick R̂∗ within the set {2s ·R({i∗}) : 0≤ s≤ ⌈log2 n⌉}.
• Revenue contribution vectors: We approximately estimate the revenue contributions given by

{c∗p,q}[Pmax]×Q and {c∗q}Q, through the respective quantities {ĉp,q}[Pmax]×Q] and {ĉq}Q. These vectors are

jointly defined as follows. Letting δ = ε
L · R̂∗, where L= (Pmax +1) · |Q|, for every p ∈ [Pmax] and q ∈Q the

quantity ĉp,q is of the form ĉp,q = np,q · δ, where np,q ∈N is the unique integer for which

ĉp,q = np,q · δ≤ c∗p,q < (np,q +1) · δ= ĉp,q + δ . (11)

Similarly, for every q ∈Q, the approximate quantity ĉq is of the form ĉq = nq · δ, where nq ∈N is the unique

integer for which

ĉq = nq · δ≤ c∗q < (nq +1) · δ= ĉq + δ . (12)

• Coefficient vector: We approximately estimate the coefficients α(S∗, q) =E[ wq

1+wq+w(CS∗ )
] of the unlikely

items Uq in the optimal assortment S∗ for every q ∈ Q, through the quantities {α̂q}Q. Letting β =

1
1+(n+1)·wQmax

, the estimated quantity α̂q is of the form α̂q =wqβ · (1+ε)rq , where rq ∈N is the unique integer

for which

(1− ε)2 · α̂q ≤ α (S∗, q)≤ (1− ε) · α̂q . (13)

Inequalities (11)-(13) immediately imply that the input parameters ({ĉq, α̂q}Q,{ĉp,q}[Pmax]×Q) satisfy Prop-

erties 1-3, as stated in Claim 1. Now, we argue these estimates can be determined by enumerating over

polynomially many distinct vectors. To this end, we bound the cardinality of the set Ω formed by all possible

input vectors of the form specified in (11)-(13).

Efficient enumeration. We first observe that R̂∗ is chosen within a set of O(logn) distinct values. In

order to obtain an upper bound on the number of distinct contribution vectors, we observe that

Pmax!

p=1

Qmax!

q=Qmin

np,q +

Qmax!

q=Qmin

nq ≤
2L
ε

,

where the inequality follows from (11) and (12), noting that
"Pmax

p=1

"Qmax

q=Qmin
c∗p,q +

"Qmax

q=Qmin
c∗q = R(S∗) ≤

2 · R̂∗. Consequently, the vector formed by {np,q}[Pmax]×Q and {nq}Q can be viewed as a partition of some

integer µ ∈ [0, 2L
ε
] into precisely L = (|Q| · (Pmax + 1) integers. Therefore, the contributions vector can be

recovered by enumerating over O(2O(L
!
)) =O(nO( 1

!4
log 1

!
)) distinct partitions, since L=O( 1

ε3
log 1

ε
logn).

In order to derive an upper bound on the number of distinct coefficient vectors, we remark that the

quantity α(S∗,q)
wq = E[ 1

1+wq+w(CS∗ )
] is monotone non-increasing in q ∈ Q, and it is contained in the range

[β, 1
1+wQmin

], where β = 1
1+(n+1)wQmax

. Thus, by inequality (13), the corresponding sequence of exponents

{rq}Qmax
q=Qmin

within our estimates α̂q =wqβ · (1+ε)rq is monotone non-increasing, and contained in the interval
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[⌈ 1
ε
· (log(n+ 1) + |Q|)⌉]. Each such sequence is uniquely determined by a partition of an integer µ ∈ [⌈ 1

ε
·

(log(n+1)+ |Q|)⌉] into precisely |Q| integers, meaning that there are only O(2O( 1
!
logn+ 1

!3
logn)) =O(nO( 1

!3
))

distinct candidates since |Q|=O( 1
ε2
logn) by Assumption 2.

All in all, we have shown that parameters ({ĉq, α̂q}Q,{ĉp,q}[Pmax]×Q) that satisfy Properties 1-3 in Claim 1

can be recovered by enumerating over a collection Ω of cardinality |Ω|=O(nO( 1
!4

log 1
!
)).

C.2. Proof of Lemma 1 (Poissonization)

For µ ∈ [0,1], we use B(µ) to denote a Bernoulli random variable with probability of success µ. We remind

the reader that two random variables Z1 and Z2 are in the (standard) convex order Z1 ≽cx Z2 if, for every

convex function φ, we have E[φ(Z1)]≥E[φ(Z2)], provided the expectations exist. We use Z1 ∼Z2 to indicate

that Z1,Z2 follow the same distribution. It is worth observing that the convex order Z1 ≽cx Z2 implies in

particular that the convex non-increasing relationship Z1 ≽cni Z2 holds.

Our proof proceeds from two basic claims relating B(µ) and P (µ) through stochastic orders. Claim 3

argues that these two random variables are convexly ordered.

Claim 3. P (µ)≽cx B(µ), for every µ∈ [0,1]

This inequality is well-known; see for example Lemma 3 in the paper by Boutsikas and Vaggelatou (2002)

who invoke a general criterion due to Karlin and Novikoff (1963). Since the convex order is closed under

convolution (e.g., see Thm. 3.A.12(d) in Shaked and Shanthikumar (2007)), Claim 3 implies that

P (λ)∼
k!

i=1

P (λi)≽cx

k!

i=1

B(λi)∼
k!

i=1

Xi ∼ Y .

Since the stochastic convex order implies the convex non-increasing order, we conclude that P (λ)≽cni Y .

It remains to show that Y ≽cni P ((1 + ε) · λ). To this end, when the Poisson arrival rate is made slightly

larger than λ, we establish in the next claim a reverse inequality to that of Claim 3, according to the usual

stochastic order.

Claim 4. For every ε∈ [0,
√
2− 1] and µ∈ [0, ε], we have P ((1+ ε) ·µ)≽st B(µ).

Proof To prove the claim, it suffices to show that Pr [P ((1+ ε) ·µ) = 0]≤Pr [B(µ) = 0]. For this purpose,

note that

Pr [P ((1+ ε) ·µ) = 0] = e−(1+ε)·µ

≤ 1− (1+ ε) ·µ+
1

2
(1+ ε)2 ·µ2

≤ 1−µ

= Pr [B(µ) = 0] ,

where the second inequality holds since ε∈ [0,
√
2− 1] and µ∈ [0, ε]. □

By noting that the usual stochastic order implies a convex non-increasing relationship in reverse order, we

have

Y ∼
k!

i=1

Xi ∼
k!

i=1

B(λi)≽cni

k!

i=1

P ((1+ ε) ·λi)∼ P ((1+ ε) ·λ) ,

where the stochastic inequality follows from Claim 4 and the fact that the usual stochastic order is closed

under convolution.
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C.3. Proof of Lemma 2

Focusing on an unlikely item i∈ S∩Uq, and letting p∈ [Pmin,0] be the unique index for which i∈ S∩Wq∩Λp,

we first observe that

π(i, S) = λi ·E
*

wi

1+wi +w(C−i
S )

+

≥ λi ·E
*

wq

1+wq +w(CS)

+

= λi ·α(S, q) ,

where the inequality above holds since wi =wq and w(CS)≽st w(C
−i
S ). In the opposite direction, we have

λi ·α(S, q) = λi ·E
*

wq

1+wq +w(CS)

+

≥ λi ·Pr [i /∈CS] ·E
*

wq

1+wq +w(C−i
S )

,,,, i /∈CS

+

≥ λi · (1− ε) ·E
*

wi

1+wi +w(C−i
S )

+

= (1− ε) ·π(i, S) ,

where the second inequality proceeds by noting that the random variables I[i /∈ CS] and w(C−i
S ) are inde-

pendent, and that Pr [i /∈CS] = 1−λi ≥ 1− ε since item i is unlikely.

C.4. Proof of Lemma 3

We assume without loss of generality that items are indexed such that r1 ≥ · · ·≥ rn, and let S∗ ⊆ [n] be an

assortment for which the quantity
"

i∈S∗ i is minimized over all optimal assortments. We argue that S∗ is

necessarily revenue-ordered by class. To arrive at a contradiction, suppose that there exists a class Wq ∩Λp

and a pair of items i1, i2 ∈Wq ∩Λp such that i1 < i2, with i2 ∈ S∗ and i1 /∈ S∗. In this case, we construct

the altered assortment S̃ = (S∗ \ {i2}) ∪ {i1} where i1 is swapped into S∗ in place of i2. The important

observation is that, since these items have precisely the same consideration probabilities and preference

weights, which govern the random choice outcomes, we have π(i1, S̃) = π(i2, S
∗) as well as π(j, S̃) = π(j,S∗)

for every other item j ∈ S∗ \ {i2}. Thus, we obtain R(S̃)−R(S∗) = ri1 · π(i1, S̃)− ri2 · π(i2, S∗) ≥ 0, since

ri1 ≥ ri2 and π(i1, S̃) = π(i2, S
∗), meaning that the assortment S̃ is also optimal. However, as i1 < i2, we have

"
i∈S̃

i <
"

i∈S∗ i, contradicting the choice of S∗.

Appendix D: Proof of Theorem 3: Analysis

In what follows, we formally establish near-optimal performance guarantees for the approximation algorithm

presented in Section 3. We first establish in Appendix D.1 various structural properties that mirror the

technical insights of Section 3. Next, in Appendices D.2 and D.3, our analysis proceeds by bounding the

revenue contributions of the unlikely and likely items selected by the specialized algorithms MinKnapsack(·)

and Greedy(·), respectively. Finally, by combining these results in Appendix D.4, we complete the proof of

Theorem 3.
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Preliminaries and notation. Recall from Section 3.4 that B = Bunlike ∪ Blikely is the decomposable

assortment returned in Step 3 of our approximation scheme. In what follows, we fix a collection of input

parameters ({ĉq, α̂q}Q,{ĉp,q}[Pmax]×Q)∈Ω that satisfy Properties 1-3 of Claim 1. We denote by B̂ = B̂unlike∪
B̂likely the resulting decomposable assortment, generated in Steps 2 and 3 of our approximation scheme, i.e.,

B̂unlike = MinKnapsack({(ĉq, α̂q)}Q) and B̂likely = Greedy({ĉp,q}[Pmax]×Q, B̂unlike). We let Ûq be the collection

of items generated by solving the min-knapsack instance over the class of items Uq, and let B̂q be the resulting

decomposable assortment specified by MinKnapsack(·) within this class. Similarly, we let Ŝt ⊆Nlikely be the

subset of likely items constructed in the t-th iteration of Greedy(·).

D.1. Main structural properties

We remind the reader that the decomposable assortment B̂ is comprised of B̂unlike and B̂likely, constructed

by MinKnapsack(·) and Greedy(·) in Sections 3.2 and 3.3, respectively. In what follows, we establish key

structural properties of these decomposable assortments, which validate the design principles that guide

these specialized algorithms.

Properties of the min-knapsack procedure (Step 2a). Recall that, in our description of MinKnapsack(·)
in Section 3.2, the objective of the min-knapsack instances was to construct a subset of items S so as to

minimize the quantity E[|CS∩Uq
|] within each class of items Uq. This formulation was (informally) related

to a mitigation of the “cannibalization effects” due to the inclusion of items in the assortment. The next

claim essentially confirms that, for every q ∈Q, the choice probabilities are no more “cannibalized” by our

assortment decisions B̂q within Uq than by the optimal assortment decisions S∗ ∩Uq.

Claim 5. For every positive random variable W > 0 independent of the consideration sets {CS∩Uq}q∈Q

and {CS∗∩Uq}q∈Q, where S denotes a random assortment sampled according to the decomposable assortment

B̂unlike, we have

ES∼B̂unlike

1
1

W +
"

q∈Qwq · |CS∩Uq
|

2
≥E

1
1

W +
"

q∈Qwq · |CS∗∩Uq
|

2
.

The proof of Claim 5 is presented in Appendix D.5, and it crucially relies on the Poissonization idea of

Lemma 1.

Properties of the greedy procedure (Step 2b). In what follows, we establish an invariant of Greedy(·),
arguing that at any point in time, the constructed assortment forms a subset of the likely items picked by

the optimal assortment S∗.

Claim 6. Ŝt ⊆ S∗ ∩Nlikely, for every t∈ [0, T ].

The proof is presented in Appendix D.6. At a high-level, we show that the termination criterion placed on

Greedy(·) prevents our algorithm from over-selecting items in any given class Wq ∩Λp.

D.2. Bounding the contributions of unlikely items

Armed with the properties of Appendix D.1, we are ready analyze the contributions of the unlikely items

picked by B̂unlike to the expected revenue ES∼B̂[R(S)].

Claim 7. ES∼B̂[
"

i∈S∩Nunlike
ri ·π(i, S)]≥ (1− 4ε) ·

"Qmax

q=Qmin
ĉq.
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Proof. Observe that, for every q ∈Q, the expected choice probability ES∼B̂[π(i, S)] of every unlikely item

i∈ Ûq can be lower-bounded as follows:

ES∼B̂ [π(i, S)]

= PrS∼B̂ [i∈CS] ·ES∼B̂

*
wi

1+wi +w(C−i
S )

+

≥ (1− ε) ·λi ·ES∼B̂

*
wi

1+wi +w(CS)

+
(14)

= (1− ε) ·λi ·ES∼B̂

1
wi

1+wi +
"Qmax

q′=Qmin
wq′ · |CS∩Uq′

|+w(CS∩Nlikely
)

2

≥ (1− ε) ·λiwi ·ES∼B̂

1
1

1+wi +
"Qmax

q′=Qmin
wq′ · |CS∩Uq′

|+w(CS∗∩Nlikely
)

2
(15)

≥ (1− ε) ·λiwi ·E
1

1

1+wi +
"

q′∈Qwq′ · |CS∗∩Uq′
|+w(CS∗∩Nlikely

)

2
(16)

= (1− ε) ·λi ·E
*

wq

1+wq +w(CS∗)

+

= (1− ε) ·λi ·α (S∗, q)

≥ (1− 3ε) ·λi · α̂q . (17)

Here, inequality (14) is obtained by noting that PrS∼B̂ [i∈CS] = (1− ε) · λi and that w(C−i
S )≼st w(CS) for

any subset of items S. Inequality (15) holds since w(CS∗∩Nlikely
)≽st w(CST

) as implied by Claim 6, and by

noting that S∩Nlikely is equal to ST with probability 1, since S is sampled from the decomposable assortment

B̂ whose likely items are offered with probability 1. Inequality (16) follows from Claim 5, instantiated with

W = 1+wi+w(CS∗∩Nlikely
). Finally, inequality (17) proceeds from Property 3 of Claim 1, stating in particular

that α(S∗, q)≥ (1− ε)2 · α̂q.

Consequently, for the expected revenue contribution due to likely items, we obtain:

ES∼B̂

1
!

i∈S∩Nunlike

ri ·π(i, S)
2
≥ (1− 3ε) ·

Qmax!

q=Qmin

!

i∈Uq

riλi · α̂q

≥ (1− 3ε) ·
Qmax!

q=Qmin

$

% ε

n
· ĉq ·

!

i∈Ûq

γi

&

'

≥ (1− 4ε) ·
Qmax!

q=Qmin

ĉq ,

where the second inequality proceeds from eliminating floors in our definition of γi, where γi = ⌊nλiriα̂q

εĉq
⌋, and

the last inequality holds since
"

i∈S∗∩Uq
γi ≥ (1− ε) · n

ε
, as shown by inequality (24) in the proof of Claim 5.

□

D.3. Bounding the contributions of likely items

We now turn our attention to the contributions of the likely items picked by B̂likely to the expected revenue

ES∼B̂[R(S)]. Specifically, we establish the following claim.

Claim 8. ES∼B̂[
"

i∈S∩Nlikely
ri ·π(i, S)]≥ (1− ε) ·

"Pmax

p=1

"Qmax

q=Qmin
ĉp,q.



Authors’ names blinded for peer review
50 Article submitted to Management Science; manuscript no. MS-0001-1922.65

Proof. We begin by noting that S ∩Nlikely is equal to ŜT with probability 1, since the decomposable

assortment B̂likely generated in the last iteration of Greedy(·) includes each item of ST with probability 1.

Thus, in order to prove the desired claim, it suffices to show that
!

i∈ŜT∩Λp∩Wq

ri ·ES∼B̂unlike

/
π̃(i, S ∪ ŜT )

0
≥ (1− ε) · ĉp,q ,

for every p∈ [Pmax] and q ∈Q. For this purpose, by Claim 6, we have in particular (ŜT ∩Λp∩Wq)⊆ (S∗∩Λp∩
Wq). Therefore, given the termination criterion of Greedy(·), the inequalities |ŜT ∩Λp∩Wq|< |S∗∩Λp∩Wq|
and

"
i∈ŜT∩Λp∩Wq

ri ·ES∼Bunlike
[π̃(i, S∪ ŜT )]< (1− ε) · ĉp,q cannot simultaneously hold at the last iteration T .

If the latter inequality does not hold, we are clearly done, noting that this inequality is exactly the opposite

of what we want to show. We therefore consider the case where the former inequality does not hold, i.e.,

|ŜT ∩Λp∩Wq|≥ |S∗∩Λp∩Wq|. Clearly, in this case, we have (ŜT ∩Λp∩Wq) = (S∗∩Λp∩Wq). Consequently,

letting S∗
likely = S∗ ∩Nlikely, it follows that

!

i∈ŜT∩Λp∩Wq

ri ·ES∼B̂unlike

/
π̃
3
i, S ∪ ŜT

40
=

!

i∈S∗∩Λp∩Wq

ri ·ES∼B̂unlike

/
π̃
3
i, S ∪ ŜT

40

≥
!

i∈S∗∩Λp∩Wq

ri ·ES∼B̂unlike

/
π
3
i, S ∪ ŜT

40

≥
!

i∈S∗∩Λp∩Wq

ri ·ES∼B̂unlike

(
π
5
i, S ∪S∗

likely

6)
, (18)

where the first inequality holds since the FPTAS of Theorem 2 ensures that ES∼B̂unlike
[π̃(i, S ∪ ŜT )] ≥

ES∼B̂unlike
[π(i, S ∪ ŜT )], and the second inequality holds since ŜT ⊆ S∗

likely by Claim 6. In the remainder of

this proof, we show that the sum-expression on the right-hand side of inequality (18) can be lower-bounded

by ĉp,q. To this end, we observe that
!

i∈S∗∩Λp∩Wq

ri ·ES∼B̂unlike

(
π
5
i, S ∪S∗

likely

6)

=
!

i∈S∗∩Λp∩Wq

riλiwi ·ES∼B̂unlike

1
1

1+wi +w(CS)+w(C−i
S∗∩Nlikely

)

2

≥
!

i∈S∗∩Λp∩Wq

riλiwi ·E
1

1

1+wi +w(CS∗∩Nunlike
)+w(C−i

S∗∩Nlikely
)

2

=
!

i∈S∗∩Λp∩Wq

ri ·π(i, S∗)

= c∗p,q

≥ ĉp,q .

The first inequality proceeds from Claim 5, instantiated with W = 1+wi+w(C−i
S∗∩Nlikely

). The last inequality

follows from Property 1 of Claim 1. □

D.4. Proving the performance guarantee of Theorem 3

To conclude the proof of Theorem 3, we show that the decomposable assortment B generates an expected rev-

enue within factor 1−O(ε) of the optimal expected revenue R(S∗). Specifically, by combining the respective

bounds obtained for unlikely and likely items in Claims 7 and 8, we obtain

ES∼B [R (S)]
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≥ (1− ε) ·ES∼B̂ [R (S)]

= (1− ε) ·ES∼B̂

7

8
!

i∈S∩Nlikely

ri ·π (i, S)+
!

i∈S∩Nunlike

ri ·π (i, S)

9

:

≥ (1− 5ε) ·
;

Pmax!

p=1

Qmax!

q=Qmin

ĉp,q +

Qmax!

q=Qmin

ĉq

<

≥ (1− 5ε) ·
;

Pmax!

p=1

Qmax!

q=Qmin

-
c∗p,q −

2ε

L ·R(S∗)

.
+

Qmax!

q=Qmin

-
c∗q −

2ε

L ·R(S∗)

.<

≥ (1− 7ε) ·R(S∗) . (19)

Here, the first inequality follows by noting that the decomposable assortment B dominates B̂ in terms

of revenue by Step 3 of our approximation scheme. The second inequality follows from Claims 7 and 8.

The next inequality is due to Properties 1 and 2 of Claim 1. The last inequality follows by recalling that

L= (Pmax +1) · |Q|.

D.5. Proof of Claim 5

Let Q = {q1, . . . , q|Q|} be an arbitrary indexing of the elements of Q. The proof proceeds by an induction

over t∈ [0, |Q|] showing that:

ES∼B̂unlike

1
1

W +
"

q∈Qwq · |CS∩Uq
|

2

≥ES∼B̂unlike

1
1

W +
"t

k=1w
qk · |CS∗∩Uqk

|+
"|Q|

k=t+1w
qk · |CS∩Uqk

|

2
.

The base case of the induction t= 0 is immediate, since this inequality is satisfied with an equality. Next, we

show that the induction hypothesis propagates to every 1≤ t≤ |Q|. To this end, letting V−t =W +
"t−1

k=1w
qk ·

|CS∗∩Uqk
|+

"t

k=t+1w
q · |CS∩Uqk

|, we have:

ES∼B̂likely

1
1

W +
"t

k=1w
qk · |CS∗∩Uqk

|+
"|Q|

k=t+1w
qk · |CS∩Uqk

|

2

=E
*

1

wqt · |CS∗∩Uqt
|+V−t

+

=EV−t

*
E
*

1

wqt · |CS∗∩Uqt
|+V−t

,,,,V−t

++

≤EV−t

1
E

1
1

wqt ·P (
"

i∈S∗∩Uqt
λi)+V−t

,,,,,V−t

22
(20)

≤EV−t

1
E

1
1

wqt ·P (
"

i∈Ûqt
λi)+V−t

,,,,,V−t

22
(21)

≤EV−t

*
ES∼B̂likely

*
1

wqt · |CS∩Uqt
|+V−t

,,,,V−t

++
(22)

=ES∼B̂likely

*
1

wqt · |CS∩Uqt
|+V−t

+

=ES∼B̂likely

1
1

W +
"t−1

k=1w
qk · |CS∗∩Uqk

|+
"|Q|

k=t
wqk · |CS∩Uqk

|

2
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≤ES∼B̂likely

1
1

W +
"

q∈Qwq · |CS∩Uq |

2
, (23)

where inequality (23) immediately follows from our induction hypothesis.

Inequality (20) proceeds from Lemma 1 and the independence between the random variables V−t and

|CS∗∩Uqt
|. To apply Lemma 1, observe that |CS∗∩Uqt

| =
"

i∈S∗∩Uqt
Xi where {Xi}i∈S∗∩Uqt

is a collection of

independent Bernoulli random variables with probabilities of success {λi}i∈S∗∩Uqt
. Hence, the first inequality

of Lemma 1 implies that P (
"

i∈S∗∩Uqt
λi) ≽cni |CS∗∩Uqt

|. This relationship yields (20) since the function

x 0→ 1
wqt ·x+v

is convex non-increasing over R+ for any v > 0.

Inequality (21) is justified by showing that
"

i∈S∗∩Uqt
λi ≥

"
i∈Ûqt

λi. To this end, it suffices to show

that the subset S∗ ∩ Uqt is feasible with respect to the min-knapsack instance for which Ûq is optimal (see

Section 3.2). On the account that Property 3 in Claim 1 is satisfied, we have

!

i∈S∗∩Uq

riλiα̂q ≥
1

1− ε
·

!

i∈S∗∩Uq

riλiα (S∗, q)≥
!

i∈S∗∩Uq

riπ (i, S
∗) = c∗q ≥ ĉq ,

where the second inequality proceeds from Lemma 2, and the third inequality follows from Property 2 of

Claim 1. Now, since γi = ⌊nλiriα̂q

εĉq
⌋, we get

!

i∈S∗∩Uq

γi ≥
!

i∈S∗∩Uq

-
nλiriα̂q

εĉq
− 1

.
≥ n

ε
− |S∗ ∩Uq|≥ (1− ε) · n

ε
. (24)

Inequality (24) precisely states that S∗∩Uqt is feasible with respect to the min-knapsack instance associated

with the class of items Uqt , thereby completing the proof of (21).

Inequality (22) proceeds from Lemma 1 and the independence between the random variables V−t and

|CS∩Uqt
|, where S designates a random assortment sampled according to the decomposable assortment B̂unlike.

Indeed, observe that |CS∩Uqt
|=

"
i∈Ûqt

X̃i where {X̃i}i∈Ûqt
is a collection of independent Bernoulli random

variables with probabilities of success λ̃i = (1− ε) · λi for every i ∈ Ûqt . (Recall from Section 3.2 that Ûq is

the set of items that are picked with positive probability by the decomposable assortment B̂unlike within Uq.)

The second inequality of Lemma 1 implies that |CS∩Uqt
|≽cni P ((1+ ε) ·

"
i∈Ûqt

(1− ε) ·λi)≽cni P (
"

i∈Ûqt
λi).

D.6. Proof of Claim 6

This result is proven by induction over t ∈ [0, T ]. The base case t = 0 is clearly satisfied since Ŝ0 = ∅ by

definition. For the general case t≥ 1, we have Ŝt−1 ⊆ S∗∩Nlikely by the induction hypothesis. Recall that the

set of items Ŝt was constructed by adding item it−1 to Ŝt−1 in iteration t− 1; we let p∈ [Pmax] and q ∈Q be

the unique indices for which it−1 ∈ Λp ∩Wq. Now, suppose that it−1 /∈ S∗. By the revenue-ordered-by-class

property stated in Lemma 3, the subset S∗∩Λp∩Wq is formed by the kp,q highest revenue items in Λp∩Wq,

where kp,q = |S∗∩Λp∩Wq|. We first observe that |Ŝt−1∩Λp∩Wq|= kp,q. Otherwise, if |Ŝt−1∩Λp∩Wq|< kp,q,

our greedy selection rule ensures that item it−1 is necessarily among the kp,q highest revenue items in Λp∩Wq,

implying that it−1 ∈ S∗∩Λp∩Wq, in contradiction to having it−1 /∈ S∗. Therefore, combining this observation

with the induction hypothesis, we infer that (Ŝt−1 ∩ Λp ∩Wq) = (S∗ ∩ Λp ∩Wq). Now, just before picking

item it−1 at iteration t− 1 of the greedy algorithm, we had

!

i∈Ŝt−1∩Λp∩Wq

ri ·ES∼B̂unlike

/
π
3
i, S ∪ Ŝt−1

40



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. MS-0001-1922.65 53

≤
!

i∈Ŝt−1∩Λp∩Wq

ri ·ES∼B̂unlike

/
π̃(i, S ∪ Ŝt−1)

0

< (1− ε) · ĉp,q

< ĉp,q , (25)

where the first inequality holds since the FPTAS of Theorem 2 ensures that ES∼B̂unlike
[π(i, S ∪ Ŝt−1)] ≤

ES∼B̂unlike
[π̃(i, S ∪ Ŝt−1)]. The second inequality follows from the termination criterion of our greedy proce-

dure, since inequality (2) is necessarily violated.

On the other hand,

!

i∈Ŝt−1∩Λp∩Wq

ri ·ES∼B̂unlike

/
π(i, S ∪ Ŝt−1)

0

=
!

i∈S∗∩Λp∩Wq

ri ·ES∼B̂unlike

/
π(i, S ∪ Ŝt−1)

0

=
!

i∈S∗∩Λp∩Wq

riλiwi ·ES∼B̂unlike

1
1

1+wi +w(CS)+w(C−i

Ŝt−1
)

2

≥
!

i∈S∗∩Λp∩Wq

riλiwi ·ES∼B̂unlike

1
1

1+wi +w(CS)+w(C−i
S∗∩Nlikely

)

2

≥
!

i∈S∗∩Λp∩Wq

riλiwi ·E
1

1

1+wi +w(CS∗∩Nunlike
)+w(C−i

S∗∩Nlikely
)

2

=
!

i∈S∗∩Λp∩Wq

ri ·π(i, S∗)

= c∗p,q .

Here, the first equality holds since (Ŝt−1 ∩Λp ∩Wq) = (S∗ ∩Λp ∩Wq), as shown above. The first inequality

holds since Ŝt−1 ⊆ S∗ ∩Nlikely by the induction hypothesis, implying that w(C−i
S∗∩Nlikely

) ≽st w(C
−i

Ŝt−1
). In

addition, we note that CS is independent of C−i

Ŝt−1
and C−i

S∗∩Nlikely
, where S is the random realization of

the decomposable assortment B̂unlike. The second inequality proceeds from Claim 5, instantiated with W =

1+wi +w(C−i
S∗∩Nlikely

). Combining the latter inequality with (25), we obtain c∗p,q < ĉp,q, which contradicts

Property 1 of Claim 1. It follows that it−1 ∈ S∗ ∩Λp ∩Wq, and therefore Ŝt ⊆ S∗ ∩Nlikely, as desired.
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Online Companion

Appendix EC.1: Proof of Lemma 4

Our proof proceeds in two steps, where we separately analyze the effects of two rounding proce-

dures. First, we use the rounded weights {w̃i}i∈[n] and revenues {r̃i}i∈[n], but we keep the original

consideration probabilities {λi}i∈[n]. We use Rw̃(·) to denote the resulting expected revenue func-

tion. The following claim is established in Appendix EC.1.1.

Claim EC.1. For every S ⊆ [n], we have (1− ε) ·R(S)≤Rw̃(S)≤ (1+ 2ε) ·R(S).

Next, suppose that in addition to using the rounded weights {w̃i}i∈[n] and revenues {r̃i}i∈[n],

we also consider the rounded consideration probabilities {λ̃i}i∈[n] in place of {λi}i∈[n]. Recall that

R̃(·) denotes the resulting expected revenue function. We fix an arbitrary assortment S ⊆ [n]. Our

analysis proceeds from the next two claims.

Claim EC.2. R̃(S)≥ (1− ε) ·Rw̃(S).

Claim EC.3. ES′∼BS [Rw̃(S
′)]≥ (1− ε) · R̃(S).

To conclude the proof of Lemma 4, note that

ES′∼BS [R(S′)]≥ (1− 2ε) ·ES′∼BS [Rw̃(S
′))]≥ (1− 3ε) · R̃(S) ,

where the former inequality is due to Claim EC.1 and the latter follows from Claim EC.3. Recip-

rocally, we have

R̃(S)≥ (1− ε) ·Rw̃(S)≥ (1− 2ε) ·R(S) ,

where the inequalities are derived by applying Claims EC.2 and EC.1 in succession.

EC.1.1. Proof of Claim EC.1

Let πw(i, S) be the choice probability of item i out of the assortment S, with respect to the

original weight parameters w. The analogous choice probability πw̃(i, S) with respect to w̃ is defined

similarly, noting that both quantities are independent of the price parameters. In order to establish

the desired claim, it suffices to prove that, for every item i∈ S,

(1− ε) · ri ·πw(i, S)≤ r̃i ·πw̃(i, S)≤ (1+ 2ε) · ri ·πw(i, S) .

To obtain the first inequality, rather than exploiting representation (1) of the choice probabilities,

we express the latter by conditioning on how the consideration set CS is realized. Based on this

idea, we have

r̃i ·πw̃(i, S) = r̃i ·
&

T⊆S:i∈T

Pr [CS = T ] · w̃i

1+ w̃(T )
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≥ ri ·
&

T⊆S:i∈T

Pr [CS = T ] · wi

1+ ε+(1+ ε) ·w(T )

≥ (1− ε) · ri ·
&

T⊆S:i∈T

Pr [CS = T ] · wi

1+w(T )

= (1− ε) · ri ·πw(i, S) ,

where the first inequality holds since r̃iw̃i = riwi and since

w̃(T ) =
&

i∈T∩W0

w̃i +
&

q≥1

&

i∈T∩Wq

w̃i ≤
|T ∩W0|

n
· ε+(1+ ε) ·

&

q≥1

&

i∈T∩Wq

wi ≤ ε+(1+ ε) ·w(T ) .

Using similar arguments in the opposite direction, we have

r̃i ·πw̃(i, S) = r̃i ·
&

T⊆S:i∈T

Pr [CS = T ] · w̃i

1+ w̃(T )

≤ ri ·
&

T⊆S:i∈T

Pr [CS = T ] · wi

1+w(T )− ε

≤ (1+ 2ε) · ri ·
&

T⊆S:i∈T

Pr [CS = T ] · wi

1+w(T )

= (1+2ε) · ri ·πw(i, S) ,

Here, the first inequality holds since

w̃(T )≥
&

q≥1

&

i∈T∩Wq

w̃i ≥
&

q≥1

&

i∈T∩Wq

wi +

.
&

i∈T∩W0

wi − ε

/
=w(T )− ε .

EC.1.2. Proof of Claim EC.2

Let π̃(i, S) be the choice probability of item i out of the assortment S, with respect to the rounded

parameters. We simply have to show that π̃(i, S)≥ (1− ε) · πw̃(i, S). For this purpose, we utilize

representation (1) of the choice probabilities to obtain

π̃(i, S) = λ̃i ·E
"

w̃i

1+ w̃i + w̃(C̃−i
S )

$
,

where C̃−i
S represents the random consideration set induced by S \{i} with respect to the rounded

consideration probabilities {λ̃i}i∈[n]. Consequently, we have

π̃(i, S) = λ̃i ·E
"

w̃i

1+ w̃i + w̃(C̃−i
S )

$

≥ (1− ε) ·λi ·E
"

w̃i

1+ w̃i + w̃(C̃−i
S )

$

≥ (1− ε) ·λi ·E
"

w̃i

1+ w̃i + w̃(C−i
S )

$

= (1− ε) ·πw̃(i, S) ,
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where the first inequality follows from the construction of the rounded consideration probabili-

ties. The second inequality proceeds from the stochastic orderings w̃(C̃−i
S )∼

!
j∈S\{i} w̃j ·B(λ̃j)≼

!
j∈S\{i} w̃j ·B(λj)∼ w̃(C−i

S ), where the inequality holds since the usual stochastic order is closed

under convolution and λ̃j ≤ λj for every j ∈ S \ {i}.

EC.1.3. Proof of Claim EC.3

To prove the desired claim, it is sufficient to show that ES′∼BS [πw̃(i, S
′)]≥ (1− ε) · π̃(i, S). To this

end, we note that

ES′∼BS [πw̃ (i, S′)] = ES′∼BS

"
(1− ε) ·λi ·E

"
w̃i

1+ w̃i + w̃(C−i
S′ )

$$

≥ λi ·E
"

w̃i

1+ w̃i + w̃(C̃−i
S )

$

≥ (1− ε) · λ̃i ·E
"

w̃i

1+ w̃i + w̃(C̃−i
S )

$

= (1− ε) · π̃ (i, S) ,

where the equalities follow from representation (1) of the choice probabilities. The first inequality

proceeds from the stochastic ordering w̃(C−i
S′ )∼

!
j∈S\{i} w̃j ·B((1− ε) ·λj)≼

!
j∈S\{i} w̃j ·B(λ̃j)∼

w̃(C̃−i
S ) where S′ is the random realization of the decomposable assortment BS. Here, the stochastic

inequality holds since the usual stochastic order is closed under convolution and λ̃j ≥ (1− ε) · λj

for every j ∈ S \ {i}.

Appendix EC.2: Proof of Theorem 4

In what follows, our objective is to establish Theorem 4, which extends our algorithmic results

for general instances of the click-based MNL assortment problem. As explained in Section 4 and

Appendix EC.1, Assumption 1 can be enforced by slightly altering our input parameters with a

negligible loss of optimality, given the sensitivity analysis of Lemma 4. As such, in the remainder

of this appendix, we assume that Assumption 1 is satisfied and focus our attention on eliminating

Assumption 2. The latter states that Qmax −Qmin = O( 1
ε
· logn), which means that the ratio of

extremal preference weights is polynomially bounded.

Now, to handle the general case, in which the extremal preference weights of items are not

necessarily polynomially related, we will show how to approximately decompose any given instance

into a collection of bounded-ratio ones, glued together by means of dynamic programming. Within

this framework, our approach directly leverages the approximation scheme provided in Theorem 3

as a subroutine. Our exposition of this approach is organized as follows: First, we establish in

Appendix EC.2.1 a constrained version of Theorem 3, showing that our approximation scheme

can easily handle an additional knapsack-like constraint on the selected decomposable assortment.
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Next, we present in Appendix EC.2.2 a decomposition method that breaks any given instance

into subproblems that satisfy the bounded-ratio assumption. In Appendices EC.2.3 and EC.2.4,

we formulate a dynamic program that sequentially examines these subproblems; at each state, the

dynamic program calls our approximation scheme for the constrained bounded-ratio setting as a

subroutine.

EC.2.1. Approximation scheme for the emptiness-constrained problem

Here, we argue that the approximation scheme of Theorem 3 can be generalized to handle an addi-

tional constraint on the decomposable assortment, termed the emptiness constraint. This constraint

imposes a lower bound on the probability that the induced consideration set is empty. Specifically,

given Φ ∈ [0,1], the emptiness constraint requires that the decomposable assortment B satisfies

PrS∼B[CS = ∅]≥Φ.

In the next theorem, we state our main algorithmic result in the emptiness-constrained setting.

In what follows, we still consider instances that satisfy Assumptions 1 and 2. Let S∗ be an optimal

(deterministic) assortment for the click-based MNL assortment problem subject to the emptiness

constraint with parameter Φ.

Theorem EC.1. For any accuracy level ε> 0, we can compute a decomposable assortment B

such that ES∼B[R(S)]≥ (1− ε) ·R(S∗) and PrS∼B[CS = ∅]≥Φ. The running time of our algorithm

is O(n
O( 1

ε4
log 1

ε )).

We devote the remainder of this section to proving Theorem EC.1. Since our algorithmic

approach is nearly identical to that of the unconstrained setting, we only focus on the differences

between these approaches. Our analysis directly builds on the one presented in Appendix D for

the unconstrained setting.

Modified approximation scheme. We begin by describing how our approximation scheme is mod-

ified to account for the emptiness constraint. The algorithm is nearly identical to that of the

unconstrained setting with the only exception that, as we enumerate over the collection of input

parameters Ω, we only consider decomposable assortments the meet the emptiness criterion. Specif-

ically, we run the specialized algorithms with all input parameters ({ĉq, α̂q}Q,{ĉp,q}[Pmax]×Q) ∈ Ω

to construct Bunlike = MinKnapsack({(ĉq, α̂q)}Q) and Blikely = Greedy({ĉp,q}[Pmax]×Q,Bunlike). The

algorithm eventually returns the resulting decomposable assortment B = Bunlike ∪Blikely of max-

imum expected revenue out of all those that satisfy the constraint PrS∼B[CS = ∅] ≥ Φ. That is,

any decomposable assortment B with PrS∼B[CS = ∅]< Φ is discarded in Step 3 of the algorithm

described in Section 3.4. To summarize, our modified algorithm proceeds as follows:

1. Generate the collection of input parameters Ω.

2. For every ({ĉq, α̂q}Q,{ĉp,q}[Pmax]×Q)∈Ω:
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(a) Compute Bunlike = MinKnapsack({(ĉq, α̂q)}Q).

(b) Compute Blikely = Greedy({ĉp,q}[Pmax]×Q,Bunlike).

3. Return the decomposable assortment B =Bunlike ∪Blikely of maximum expected revenue out of

those generated in Step 2 that additionally satisfy the requirement PrS∼B[CS = ∅]≥Φ.

Analysis. Similar to the notation of Appendix D, we denote by B =Bunlike ∪Blikely the decom-

posable assortment returned by the modified approximation scheme. Recall that, for purposes of

analysis, we fix a collection of input parameters ({ĉq, α̂q}Q,{ĉp,q}[Pmax]×Q) ∈ Ω that satisfy Prop-

erties 1-3 of Claim 1. We denote by B̂ = B̂unlike ∪ B̂likely the resulting decomposable assortment,

generated in Step 2 of our approximation scheme, i.e., B̂unlike = MinKnapsack({(ĉq, α̂q)}Q) and

B̂likely = Greedy({ĉp,q}[Pmax]×Q, B̂unlike). We let Ûq be the collection of items generated by solving

the min-knapsack instance over the class of items Uq, and let B̂q be the resulting decomposable

assortment specified by MinKnapsack(·) within this class. Similarly, we let ŜT ⊆Nlikely be the subset

of likely items constructed in the last iteration of Greedy(·).

A close inspection of our analysis of the unconstrained setting in Appendix D.4 reveals that an

identical performance guarantee holds in the emptiness-constrained setting. That is, using precisely

the same line of reasoning as in inequality (19), we obtain ES∼B̂ [R (S)]≥ (1−6ε) ·R(S∗). Hence, in

order to establish Theorem EC.1, it remains to show that the decomposable assortment B̂ indeed

satisfies the emptiness criterion PrS∼B̂[CS = ∅]≥Φ, and thus, it is not discarded in Step 3 of our

modified approximation scheme.

To this end, we relate PrS∼B̂unlike
[CS = ∅] to the analogous probability with respect to S∗∩Nunlike.

The lower bound stated in Lemma EC.1 is the first step towards showing that our final assortment

B̂ meets the emptiness constraint.

Lemma EC.1. PrS∼B̂unlike
[CS = ∅]≥Pr[CS∗∩Nunlike

= ∅].

Proof. By definition of the decomposable assortment B̂unlike, we have:

PrS∼B̂unlike
[CS = ∅] =

-

q∈Q

PrS∼B̂q [CS = ∅]

=
-

q∈Q

-

i∈Ûq

(1− (1− ε) ·λi)

≥
-

q∈Q

-

i∈Ûq

e−λi

=
-

q∈Q

e
−

!
i∈Ûq

λi ,

where the second equality proceeds from our construction of the decomposable assortment B̂q,

where Pr[B̂q
i = 1] = 1−ε for every i∈Uq. The subsequent inequality holds since 1−(1−ε) ·λi ≥ e−λi
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for λi ∈ [0, ε], noting that we indeed have λi ≤ ε since all items i ∈ Ûq are unlikely. Recalling that

inequality (24) guarantees that
!

i∈Ûq
λi ≤

!
i∈S∗∩Uq

λi, we conclude that

PrS∼B̂unlike
[CS = ∅] ≥

-

q∈Q

e
−

!
i∈S∗∩Uq

λi

≥
-

q∈Q

-

i∈S∗∩Uq

(1−λi)

= Pr
0
CS∗∩Nunlike

= ∅
1
.

□
To complete the proof of Theorem EC.1, we verify that the decomposable assortment B̂ meets

the emptiness criterion, as shown in the next lemma.

Lemma EC.2. PrS∼B̂[CS = ∅]≥Φ.

Proof. Observe that

PrS∼B̂ [CS = ∅] = PrS∼B̂unlike
[CS = ∅] ·PrS∼B̂likely

[CS = ∅]

≥ Pr
0
CS∗∩Nunlike

= ∅
1
·Pr

0
CS∗∩Nlikely

= ∅
1

= Pr [CS∗ = ∅]

≥ Φ ,

where the first equality holds since the decomposable assortments B̂likely and B̂unlike are indepen-

dent. The first inequality above follow from Lemmas EC.1 and Claim 6. In particular, in order to

apply Claim 6, we note the assortment S sampled from B̂likely is deterministic and equal to ŜT ,

thus S ⊆ S∗ ∩Nlikely with probability 1. □

EC.2.2. Well-separated weight clusters

We begin by defining a way to partition the collection of weight classes into well-separated clusters,

which constitute the elementary units of our decomposition into bounded-ratio instances. The

concrete meaning of “well-separated clusters” will become clear once we introduce the necessary

definitions and constructions.

Creating weight clusters. We begin by reminding the reader that, following Assumption 1, the

entire set of items is partitioned into weights classes W0,W1, . . ., where Wq = {i ∈ [n] : wi = (1 +

ε)q · ε
n
}. For ease of notation, let Qskip = 2 · ⌈log1+ε(

n
ε
)⌉ and Qpick = ⌈ 1

ε
⌉ ·Qskip. In addition, fix a

non-positive integer s ∈ [−Qskip −Qpick +1,0], which is referred to as the shifting index; the value

of this index will be determined shortly.

Given these parameters, we initially define a sequence of pairwise-disjoint subsets Is1 , I
s
2 , . . ., where

each Isℓ corresponds to a consecutive block of non-negative integers. These subsets are iteratively

defined as follows:
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• First, we define Is1 as the interval starting at s and consisting of Qpick successive indices,

namely, Is1 = {s, s+1, . . . , s+Qpick − 1}.

• Next, we skip Qskip indices, and define Is2 as the interval formed by the next Qpick indices.

Namely, Is2 = {s+Qpick +Qskip, s+Qpick +Qskip +1, . . . , s+2Qpick +Qskip − 1}.

• Similarly, we skip the next Qskip indices and pick the next Qpick ones to define Is3 = {s +

2Qpick +2Qskip, s+2Qpick +2Qskip +1, . . . , s+3Qpick +2Qskip}. So on and so forth, as we alternate

between skipping Qskip indices and forming intervals comprised of Qpick consecutive indices.

With respect to this sequence, we introduce its corresponding sequence of clusters Cs
1 , . . . ,Cs

L, where

each cluster Cs
ℓ is the union of weight classes over all indices in Isℓ , i.e., Cs

ℓ =
%

q∈Is
ℓ
Wq. Here, L

stands for the largest integer ℓ for which Cs
ℓ is non-empty.

Cluster properties. We proceed by highlighting two structural properties of the sequence

Cs
1 , . . . ,Cs

L, which come as immediate implications of our construction:

1. For every ℓ ∈ [L], the preference weights of any two items within the cluster Cs
ℓ differ by

a factor of at most (2n/ε)2⌈1/ε⌉. This property holds since Cs
ℓ is comprised of at most Qpick =

2 · ⌈ 1
ε
⌉ · ⌈log1+ε(

n
ε
)⌉ consecutive weight classes, implying that

maxi∈Cs
ℓ
wi

mini∈Cs
ℓ
wi

≤ (1+ ε)Qpick ≤
2
2n

ε

32⌈1/ε⌉

.

Hence, each cluster taken in isolation forms a bounded-ratio instance, where all item weights are

polynomially-related.

2. For every ℓ ∈ [L− 1], the preference weights of any two items, one in Cs
ℓ and the other in

Cs
ℓ+1, differ by a factor of at least (n/ε)2. This property holds since Cs

ℓ and Cs
ℓ+1 are separated by

Qskip = 2 · ⌈log1+ε(
n
ε
)⌉ consecutive weight classes, implying that

mini∈Cs
ℓ+1

wi

maxi∈Cs
ℓ
wi

≥ (1+ ε)Qskip ≥
4n
ε

52

.

Consequently, due to properties 1 and 2, we say that the clusters Cs
1 , . . . ,Cs

L are well-separated.

The effect of eliminating unclustered weight classes. A careful examination of the sequence of

clusters Cs
1 , . . . ,Cs

L reveals that various weight classes do not appear in any of these clusters, cor-

responding to sequences of Qskip indices over which we skip during the construction of Is1 , I
s
2 , . . ..

Therefore, since the dynamic programming approach in Appendices EC.2.3 and EC.2.4 will limit

assortment decisions to the clustered weight classes Cs =
%

ℓ∈[L] Cs
ℓ , the crucial question is: Why can

we overlook revenue contribution of unclustered ones? Letting S∗ ⊆ [n] be an optimal assortment,

the next claim shows that the shifting index s can be chosen such that we incur a negligible loss

in optimality when restricting S∗ to the clustered weight classes Cs.
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Lemma EC.3. There exists a shifting index s∗ ∈ [−Qskip −Qpick +1,0] for which R(S∗ ∩ Cs∗)≥
(1− ε) ·R(S∗).

Proof. Our proof is based on a simple application of the probabilistic method (Alon and Spencer

2016). Specifically, let σ be a discrete random variable, uniformly distributed over the set of integers

in [−Qskip − Qpick + 1,0]. In this case, S∗ ∩ Cσ is clearly a random assortment, whose expected

revenue is given by

Eσ [R (S∗ ∩ Cσ)] =
&

i∈S∗

Eσ [I [i∈ Cσ] · ri ·π (i, S∗ ∩ Cσ)]

=
&

i∈S∗

Prσ [i∈ Cσ] · ri ·Eσ [π (i, S
∗ ∩ Cσ)| i∈ Cσ]

≥
&

i∈S∗

Prσ [i∈ Cσ] · ri ·π (i, S∗)

=
Qpick

Qpick +Qskip

·
&

i∈S∗

ri ·π (i, S∗)

≥ (1− ε) ·R (S∗) .

Here, the first inequality follows from representation (1) of the choice probabilities, which implies

that π(i, S∗ ∩ Cσ)≥ π(i, S∗) for any item i ∈ S∗ ∩ Cσ. The third equality can easily be derived by

observing that, due to the uniform choice of σ, any given weight class is clustered into Cσ with

probability
Qpick

Qpick+Qskip
. The last inequality holds since Qpick = ⌈ 1

ε
⌉ ·Qskip. In summary, since we have

just shown that Eσ[R(S∗ ∩ Cσ)] ≥ (1− ε) · R(S∗), there exists at least one realization s∗ of σ for

which R(S∗ ∩ Cs∗)≥ (1− ε) ·R(S∗). □
In the remainder of this section, we assume that the shifting index s∗ mentioned in Lemma EC.3

is known in advance. From an algorithmic standpoint, the value of s∗ can be guessed by exhaustively

enumerating all O( 1
ε2
log n

ε
) integers in [−Qskip − Qpick + 1,0]. Furthermore, out of the clusters

Cs∗
1 , . . . ,Cs∗

L , we focus our attention on the subsequence Cs∗
ψ(1), . . . ,Cs∗

ψ(L′) of non-empty clusters. In

what follows, the reference to s∗ and ψ will be implicit, meaning that the clusters Cs∗
ψ(1), . . . ,Cs∗

ψ(L′)

will simply be denoted by C1, . . . ,CL.

EC.2.3. Value approximation

We proceed by describing an approximate decomposition of the expected revenue ES∼B[R(S)]

generated by any decomposable assortment B, whose realization is contained within the clusters

C1, . . . ,CL, based on the individual revenue contribution of each such cluster. This decomposition

will motivate our dynamic programming approach for computing near-optimal assortments, for-

mally presented in Appendix EC.2.4.

To describe our value approximation, for every item i∈ C =
%

ℓ∈[L] Cℓ, we denote by ϕ(i) the index

of the unique cluster that contains item i. In addition, let C>ℓ designate the union of all clusters
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indexed strictly greater than ℓ, i.e., C>ℓ =
%

k≥ℓ+1 Ck. We remind the reader that representation (1)

of the choice probabilities shows that the expected revenue of any decomposable assortment B can

be written as:

ES∼B [R (S)] =ES∼B

6
&

i∈S

ri ·π(i, S)
7
=ES∼B

6
&

i∈S

riλiwi ·E
"

1

1+wi +w(C−i
S )

$7
. (EC.1)

In Lemma EC.4 below, we provide a lower bound on the inner expectation term E[ 1

1+wi+w(C−i
S

)
]

for any fixed assortment S. The important feature of this lower bound is that it can computed

knowing only the following ingredients:

1. The distribution of the random subset S ∩ Cϕ(i).

2. The probability that the induced consideration set CS∩C>ϕ(i)
is empty.

Consequently, by recalling that the preference weights within a single cluster are polynomially-

related (see property 1 in Appendix EC.2.2), and by observing that the second ingredient above

corresponds to an emptiness constraint, we facilitate an approximate reduction to the bounded-

ratio setting studied in Appendix EC.2.1.

Lemma EC.4. For every assortment S ⊆ C and item i∈ S,

E
"

1

1+wi +w(C−i
S )

$
≥ (1− ε) ·Pr

8
CS∩C>ϕ(i)

= ∅
9
·E

"
1

1+wi +w(C−i
S ∩ Cϕ(i))

$
.

Proof. The proof proceeds by observing that

E
"

1

1+wi +w(C−i
S )

$

≥Pr
8
CS∩C>ϕ(i)

= ∅
9
·E

"
1

1+wi +w(C−i
S )

####CS∩C>ϕ(i)
= ∅

$

=Pr
8
CS∩C>ϕ(i)

= ∅
9
·E

6
1

1+wi +w(CS ∩ (
%ϕ(i)−1

ℓ=1 Cℓ))+w(C−i
S ∩ Cϕ(i))

7

≥ (1− ε) ·Pr
8
CS∩C>ϕ(i)

= ∅
9
·E

"
1

1+wi +w(C−i
S ∩ Cϕ(i))

$
.

Here, the middle equality follows from the independence of CS ∩ C>ϕ(i) and C−i
S ∩ (

%ϕ(i)

ℓ=1 Cℓ). The

last inequality holds since

w

.
CS ∩

.
ϕ(i)−1:

ℓ=1

Cℓ

//
≤

#####CS ∩
.

ϕ(i)−1:

ℓ=1

Cℓ

/##### ·
4 ε

n

52

· min
j∈Cϕ(i)

wj ≤ εwi ,

given that the clusters C1, . . . ,CL are well-separated (see property 2 in Appendix EC.2.2). □
In the next claim, we argue that the lower bound stated in Lemma EC.4 is useful in obtaining

a tight approximation for the optimal expected revenue. To formalize this notion, we overload our

previous notation by letting S∗ ⊆ C be an optimal assortment restricted to weight classes clustered

into C. As shown in Lemma EC.3, this restriction has negligible losses in optimality in comparison

to arbitrary assortments, that may offer items from unclustered weight classes as well.
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Lemma EC.5. For any ε∈ (0,1/2),

R(S∗)≤ (1+ 2ε) ·
&

i∈S∗

riλiwi ·Pr
8
CS∗∩C>ϕ(i)

= ∅
9
·E

"
1

1+wi +w(C−i
S∗ ∩ Cϕ(i))

$
.

Proof. Using arguments analogous to those appearing in the proof of Lemma EC.4, we derive

an upper bound on the expectation E[ 1

1+wi+w(C−i
S∗ )

], for every item i∈ S∗, by observing that

E
"

1

1+wi +w(C−i
S∗)

$

=Pr
8
CS∗∩C>ϕ(i)

∕= ∅
9
·E

"
1

1+wi +w(C−i
S∗)

####CS∗∩C>ϕ(i)
∕= ∅

$

+Pr
8
CS∗∩C>ϕ(i)

= ∅
9
·E

"
1

1+wi +w(C−i
S∗)

####CS∗∩C>ϕ(i)
= ∅

$

≤ 1

1+wi +(n/ε)2 ·wi

+Pr
8
CS∗∩C>ϕ(i)

= ∅
9
·E

6
1

1+wi +w(C−i
S∗∩Cϕ(i)

)

7

≤ ε

n
· 1

1+wi

+Pr
8
CS∗∩C>ϕ(i)

= ∅
9
·E

6
1

1+wi +w(C−i
S∗∩Cϕ(i)

)

7
. (EC.2)

Here, the first inequality holds since the clusters C1, . . . ,CL are well-separated, implying that con-

ditional on the random consideration set CS∗∩C>ϕ(i)
being non-empty, its random total weight is at

least (n
ε
)2 ·wi. The second inequality is obtained by observing that 1+wi +(n

ε
)2 ·wi ≥ n

ε
· (1+wi)

whenever wi ≥ ε
n
. The property that the preference weight of each item is at least ε

n
follows from

the weight transformation in Section 4, which we analyzed in Appendix EC.1.

Now, according to the revenue representation (EC.1), the optimal expected revenue R(S∗) can

be upper bounded as follows:

R (S∗) =
&

i∈S∗

riλiwi ·E
"

1

1+wi +w(C−i
S∗)

$

≤ ε

n
·
&

i∈S∗

riλiwi

1+wi

+
&

i∈S∗

riλiwi ·Pr
8
CS∗∩C>ϕ(i)

= ∅
9
·E

6
1

1+wi +w(C−i
S∗∩Cϕ(i)

)

7

≤ ε ·R (S∗)+
&

i∈S∗

riλiwi ·Pr
8
CS∗∩C>ϕ(i)

= ∅
9
·E

6
1

1+wi +w(C−i
S∗∩Cϕ(i)

)

7
,

where the first inequality is obtained by plugging the upper bound (EC.2) and the second inequality

holds since R(S∗)≥ riλi · wi
1+wi

for any item i∈ C. To see this, note that the optimality of S∗ ensures

that its expected revenue R(S∗) is at least the expected revenue of the singleton assortment {i},

which is precisely riλi · wi
1+wi

. The desired claim is now obtained by rearranging the above bound.

□
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Based on the preceding discussion, Lemmas EC.4 and EC.5 immediately imply that, in order

to compute a random assortment whose expected revenue is within factor 1−O(ε) of the opti-

mal revenue R(S∗), it suffices to optimize the value approximation R̃(·), defined over the set of

decomposable assortments B as follows:

R̃(B) = ES∼B

6
&

i∈S∩C

Pr
8
CS∩C>ϕ(i)

= ∅
9
· riλiwi ·E

6
1

1+wi +w(C−i
S∩Cϕ(i)

)

77

= ES∼B

6
L&

ℓ=1

.
Pr

0
CS∩C>ℓ

= ∅
1
·
&

i∈S∩Cℓ

riλiwi ·E
6

1

1+wi +w(C−i
S∩Cℓ)

7/7

=
L&

ℓ=1

PrS∼B

0
CS∩C>ℓ

= ∅
1
·ES∼B [R (S ∩ Cℓ)] , (EC.3)

where the second equality is simply a decomposition of S ∩ C into the clusters C1, . . . ,CL, and the

third equality follows by noting that the inner sum is precisely the expected revenue generated by

S ∩ Cℓ, conditional on S being the realization of the decomposable assortment B.

EC.2.4. Gluing approximate dynamic program

Continuous dynamic program. The important observation is that the problem of maximizing the

value approximation of Appendix EC.2.3 can be formulated as a dynamic program whose state

space is described by the following parameters:

• An index ℓ∈ [L], corresponding to the cluster Cℓ that is currently being considered.

• A continuous variable θ ∈ [0,1], specifying the probability that none of the items picked from

higher-index clusters C>ℓ will appear in our random consideration set.

Given these parameters, we define F (ℓ,θ) as the maximum possible value of
!ℓ

k=1PrS∼B[CS∩C>k
=

∅] ·ES∼B[R(S ∩ Ck)] over all decomposable assortments B, subject to the probabilistic constraint

PrS∼B[CS∩C>ℓ
= ∅] = θ. An immediate implication of this definition is that, in order to compute

an assortment maximizing the value approximation R̃(·), we can equivalently compute the one for

which F (L,1) is attained. Concurrently, the definition of F can be directly used to express this

function in recursive form, by observing that for ℓ≥ 2,

F (ℓ,θ) = max
Bℓ∈Bℓ

;
θ ·ES∼Bℓ

[R (S)] +F
'
ℓ− 1,θ ·PrS∼Bℓ

[CS = ∅]
(<

. (EC.4)

Here, Bℓ designates the collection of decomposable assortments over the set of items Cℓ. In addition,

for ℓ= 1, we have

F (ℓ,θ) = θ · max
B1∈B1

ES∼B1
[R (S)] . (EC.5)

Due to the continuity of θ ∈ [0,1], the function F should be viewed as a recursive characterization

of optimal random assortments for our value approximation R̃(·).
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Discretization. For this reason, we explain how to approximately solve the recursive equa-

tions (EC.4) and (EC.5) by leveraging the bounded-ratio algorithm given in Theorem EC.1 as a

subroutine. To simplify the exposition, we assume that maxi∈C λi ≤ 1−ε. By the sensitivity analysis

established in Lemma 4, this assumption can be made without loss of generality.

Now, in order to discretize the state variable θ, we define the finite set Θ= {(1+ ε
n
)−k : 0≤ k≤

n · (1+ ⌈log1+ ε
n
( 1
ε
)⌉)}. For any Φ∈ [0,1], let B(ℓ,Φ)∈Bℓ be the decomposable assortment returned

by the approximation scheme stated in Theorem EC.1, when the underlying set of items is precisely

the cluster Cℓ, subject to the emptiness constraint PrS∼B[CS = ∅]≥Φ.

With these definitions at hand, we introduce a discrete dynamic program F̃ over the state space

[L]×Θ, i.e., a formulation where our second parameter θ is restricted to take values only within

Θ. This program is formally specified through the following recursive equations, for ℓ≥ 2,

F̃ (ℓ,θ) =max
κ̃∈Θ:
κ̃≤θ

=
θ ·ES∼B(ℓ,κ̃/θ) [R (S)] + F̃ (ℓ− 1, κ̃)

>
. (EC.6)

In addition, for ℓ= 1, we have

F̃ (ℓ,θ) = θ ·ES∼B(1,0) [R (S)] . (EC.7)

Analysis. By property 1 in Appendix EC.2.2, within each cluster Cℓ, the ratio between the

extremal preference weights is upper-bounded by ( 2n
ε
)2⌈1/ε⌉. Hence, it is easy to verify that the

instance of the constrained click-based MNL instance corresponding to each cluster satisfies

Assumption 2. By leveraging the bounded-ratio algorithm of Theorem EC.1, we infer that our

recursion can be solved in time O((n
ε
)
O( 1

ε4
log 1

ε )). To establish the performance guarantee of our

algorithm, let B̃∗ be the optimal decomposable assortment resulting from the solution of equa-

tions (EC.6) and (EC.7). Namely, B̃∗ is obtained by concatenating the decomposable assortments

picked at each step of the recursion, in the optimal sequence of dynamic programming decisions

that attain the function value F̃ (L,1). In the remainder of this section, we conclude the analysis

by relating R̃(B̃∗) to the optimum value F (L,1) of the continuous dynamic program F , which was

shown earlier to capture the assortment maximizing our value approximation R̃(·).

Lemma EC.6. R̃(B̃∗)≥ (1− 3ε) ·F (L,1).

To prove the desired inequality, we begin by considering the optimal sequence of dynamic pro-

gramming decisions for equations (EC.6) and (EC.7) that yields the random assortment B̃∗. This

sequence is denoted by (θ̃∗1 , . . . , θ̃
∗
L) ∈ ΘL, where θ̃∗L = 1. Namely, B̃∗ =

%L

ℓ=1B(ℓ, Φ̃∗
ℓ) where Φ̃∗

ℓ =

θ̃∗ℓ−1/θ̃
∗
ℓ for every ℓ∈ [1,L] and θ̃∗0 = 0. In the next claim, we relate our value approximation for the

decomposable assortment B̃∗ to the value computed by the discretized dynamic program (EC.6)-

(EC.7) along the sequence of decisions (θ̃∗1 , . . . , θ̃
∗
L).
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Claim EC.4. R̃(B̃∗) =
!L

ℓ=1 θ̃
∗
ℓ ·ES∼B(ℓ,Φ̃∗

ℓ
)[R(S)].

Proof. By definition of R̃(·) in equation (EC.3), we have:

R̃
4
B̃∗

5
= ES∼B̃∗ [R (S ∩ CL)] +

L−1&

ℓ=1

PrS∼B̃∗
0
CS∩C>ℓ

= ∅
1
·ES∼B̃∗ [R (S ∩ Cℓ)]

= ES∼B(L,Φ̃∗
L
) [R (S)] +

L−1&

ℓ=1

.
L-

k=ℓ+1

PrS∼B(k,Φ̃∗
k
) [CS = ∅]

/
·ES∼B(ℓ,Φ̃∗

ℓ
) [R (S)]

= ES∼B(L,Φ̃∗
L
) [R (S)] +

L−1&

ℓ=1

.
L-

k=ℓ+1

θ̃∗k−1

θ̃∗k

/
·ES∼B(ℓ,Φ̃∗

ℓ
) [R (S)]

=
L&

ℓ=1

θ̃∗ℓ ·ES∼B(ℓ,Φ̃∗
ℓ
) [R (S)] ,

where the second equality holds since the random sets CS(k1) and CS(k2) are independent for

every k1 ∕= k2, where S(k) is the random realization of B(k, Φ̃∗
k). The next equality follows from

the definition of B(k, Φ̃∗
k) as a decomposable assortment that satisfies the emptiness constraint

PrS∼B(k,Φ̃∗
k
)[CS = ∅]≥ Φ̃∗

k. □
Conversely, we now consider a decomposable assortment A∗ that maximizes our value approxi-

mation R̃(·), namely R̃(A∗) = F (L,1). Consequently, we recursively define θ∗L = 1, and θ∗ℓ = ⌊θ∗ℓ+1 ·
PrS∼A∗ [CS∩Cℓ+1

= ∅]⌋Θ for every ℓ ∈ [1,L− 1], where ⌊·⌋Θ is an operator that rounds its argument

down to the nearest number in Θ. Next, we define Φ∗
ℓ = θ∗ℓ−1/θ

∗
ℓ for every ℓ∈ [1,L], where θ∗0 = 0. It

is not difficult to verify that the sequence of dynamic programming decisions (θ∗1 , . . . ,θ
∗
L) is feasible

with respect to the discretized dynamic program (??). To conclude, we relate the value generated

by the sequence of dynamic programming decisions (θ∗0 ,θ
∗
1 , . . . ,θ

∗
L) to F (L,1).

Claim EC.5.
!L

ℓ=1 θ
∗
ℓ ·ES∼B(ℓ,Φ∗

ℓ
)[R(S)]≥ (1− 3ε) ·F (L,1).

Before presenting the proof of Claim EC.5, we explain how the desired inequality proceeds from

the above two claims. By Claim EC.4, we have:

R̃(B̃∗) =
L&

ℓ=1

θ̃∗ℓ ·ES∼B(ℓ,Φ̃∗
ℓ
) [R (S)]

≥
L&

ℓ=1

θ∗ℓ ·ES∼B(ℓ,Φ∗
ℓ
) [R (S)]

≥ (1− 3ε) ·F (L,1) ,

where the first inequality holds by the optimality of the dynamic programming decisions

(θ̃∗1 , . . . , θ̃
∗
L), and the last inequality immediately follows from Claim EC.5.

Proof of Claim EC.5. We begin by bounding the approximation error generated by the round-

ing operator ⌊·⌋Θ. By the definition of the set Θ, for every x≥ εn · (1 + ε
n
)−n, we necessarily have



ec14 e-companion to Author: Click-Based MNL Assortment Optimization

(1− ε
n
) ·x≤ ⌊x⌋Θ ≤ x. Hence, by our earlier assumption that 1−λi ≥ ε for every i∈ [n], and by using

the relationships θ∗ℓ−1 = ⌊θ∗ℓ · PrS∼A∗ [CS∩Cℓ = ∅]⌋Θ and Φ∗
ℓ = θ∗ℓ−1/θ

∗
ℓ , a straightforward induction

over ℓ∈ [1,L] yields

4
1− ε

n

5
·PrS∼A∗

0
CS∩Cℓ = ∅

1
≤Φ∗

ℓ ≤PrS∼A∗ [CS∩Cℓ = ∅] . (EC.8)

Thus, by noting that θ∗ℓ =
?L

k=ℓ+1Φ
∗
k, we obtain

θ∗ℓ ≥
4
1− ε

n

5L−ℓ

·PrS∼A∗ [CS∩C>ℓ
= ∅] . (EC.9)

In addition, for every ℓ∈ [1,L], by applying Theorem EC.1 to the collection of items contained in

Cℓ with Φ= Φ̃∗
ℓ , we infer from inequality (EC.8) that

ES∼B(ℓ,Φ∗
ℓ
) [R (S)]≥ (1− ε) ·ES∼A∗ [R (S ∩ Cℓ)] . (EC.10)

By combining inequalities (EC.9) and (EC.10), we finally obtain

L&

ℓ=1

θ∗ℓ ·ES∼B(ℓ,Φ∗
ℓ
) [R (S)] ≥ (1− ε) ·

L&

ℓ=1

4
1− ε

n

5L−ℓ

·PrS∼A∗ [CS∩C>ℓ
= ∅] ·ES∼A∗ [R (S ∩ Cℓ)]

≥ (1− ε) ·
4
1− ε

n

5n

·
L&

ℓ=1

PrS∼A∗ [CS∩C>ℓ
= ∅] ·ES∼A∗ [R (S ∩ Cℓ)]

≥ (1− 3ε) · R̃ (A∗)

= (1− 3ε) ·F (L,1) .

where the second inequality holds since L≤ n, by observing that the number of non-empty clusters,

as defined in Section EC.2.2, is of at most n. □

Appendix EC.3: Computational Experiment
EC.3.1. The Coupon Display PTAS

In what follows, we describe how we modify our PTAS to cater to the cardinality constrained

instances of Section 5 . First, we compute Blikely via an enumeration approach similar to Step 2(b)

of our approximation scheme with respect to the likely items. Next, we re-define the unlikely items

to be those with consideration probabilities λi ∈ [ε/n, ε]. The items with consideration probability

λi < ε/n are termed “rare”. For the unlikely items, we first guess the quantity |S∗ ∩ Uq|, which
represents the number of unlikely items from each item class added by the optimal assortment.

Then, we carry out Step 2(b) of our approximation, where MinKnapsack({(ĉq, α̂q)}Q) is exactly as

described in Section 3.2, with the addition of cardinality constraints ensuring that |S∗ ∩Uq| items

are added from item class q ∈ [Qmin,Qmax]. This step yields the decomposable random assortment

Bunlike. These updated set of steps for likely and unlikely items are described next in more detail.
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Guessing procedure and running time. We describe our guessing procedure for Blikely and analyze

the corresponding running time. By leveraging the revenue-ordered-by-class property established

in Section 3.3, we can guess Blikely by simply enumerating over all ways in which the C = 6 products

can divided among the item classes (p, q)∈ [Pmax]×Q, of which there are at most

O
'
6(Qmax−Qmin)·(Pmax−Prare)

(
=O

4
6
O((1/ε2)·log wmax

wmin
·log n

ε )
5

.

To ensure that the ratio wmax
wmin

is polynomial in n and 1
ε
, one can exploit dynamic programming

ideas similar to those presented in Appendix EC.2. All in all, this approach reduces the overall

running time of this step to O(n( 1ε )
O(1)

). This guessing scheme is akin to carrying Step 2a of our

approach with ε= 0, and hence for all future analysis, we assume that both versions of the PTAS

return the same set of likely items.

For the unlikely items, a similar analysis shows that we can guess |S∗ ∩Uq| in polynomial time

as well. After this guessing step, we carry out Step 2a exactly as detailed in Section 3.2, meaning

our overall approach for the unlikely items also runs in polynomial time. It is important to note

that in a setting with a cardinality constraint, our original PTAS must also employ this initial

guessing step and hence we may again assume that both version of the PTAS return the same set

of unlikely items.

Finally, we construct our choice of rare items Brare by myopically selecting the rare items of

largest ρi-quantities until the cardinality constraint is met, where ρi = λiriwi. For i∈Brare∪Bunlike,

we let Bi be a Bernoulli random variable with success probability 1− ε (all items in Blikely continue

to be selected with probabaility 1). Ultimately, the algorithm returns the assortment Blikely ∪
Bunlike ∪Brare, which is shown to be (1−O(ε))-optimal in our next claim.

Claim EC.6. R(Blikely ∪Bunlike ∪Brare)≥ (1−O(ε)) ·R(S∗).

Proof of Claim EC.6. Given the discussion above, all that is required to prove the claim is to

analyze the rare items selected under the two version of the PTAS. For this purpose, let B̂rare and

Brare denote the set of rare items selected under our original and modified PTAS respectively. To

help clarify, B̂rare is the subset of items returned from Step 2b that satisfy λi < ε/n. Furthermore,

let Bother = Blikely ∪ Bunlike denote their shared choices for the likely and unlikely items (with

λi ∈ [ε/n, ε]), and let B̂ =Bother∪ B̂rare and B =Bother∪Brare. To establish the claim, we first show

that

&

i∈Brare

ri ·ES∼B [π(i,Bother ∪Brare)]≥ (1− 2ε) ·
&

i∈B̂rare

ri ·ES∼B̂

8
π(i,Bother ∪ B̂rare)

9
, (EC.11)

and then we show

&

i∈Bother

ri ·ES∼B [π(i,Bother ∪Brare)]≥ (1− 2ε) ·
&

i∈B̂other

ri ·ES∼B̂

8
π(i,Bother ∪ B̂rare)

9
. (EC.12)
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Combining (EC.11) and (EC.12) with Theorem 4 yields the desired claim.

To prove (EC.11), observe that

&

i∈Brare

ri ·ES∼B [π(i,Bother ∪Brare)]≥
&

i∈Brare

λiriwi ·ES∼B

"
1

1+wi +w(CBother
)+w(CBrare)

$

≥Pr [CBrare = ∅] ·
&

i∈Brare

λiriwi ·ES∼B

"
1

1+wi +w(CBother
)

$

≥
4
1− ε

n

5n

·
&

i∈Brare

λiriwi ·ES∼B

"
1

1+wi +w(CBother
)

$

≥ (1− 2ε) ·
&

i∈Brare

λiriwi ·ES∼B

"
1

1+wi +w(CBother
)

$
.

Recalling that ρi = λiriwi, we get that

&

i∈Brare

λiriwi ·ES∼B

"
1

1+wi +w(CBother
)

$
=

&

i∈Brare

ρi ·ES∼B

"
1

1+wi +w(CBother
)

$

≥
&

i∈B̂rare

ρi ·ES∼B̂

"
1

1+wi +w(CBother
)

$

=
&

i∈B̂rare

λiriwi ·ES∼B̂

"
1

1+wi +w(CBother
)

$

≥
&

i∈B̂rare

ri ·ES∼B̂

8
π(i,Bother ∪ B̂rare)

9

where the first inequality holds since Brare is the assortment of rare items that maximizes the quan-

tity
!

i∈S ρi, while the second inequality is due to Bother ⊆ (Bother∪ B̂rare) \ {i}. Inequality (EC.11)

immediately follows from the above sequence of inequalities.

We conclude by proving (EC.12), which is the simple case. To this end, we note that

&

i∈Bother

ri ·ES∼B [π(i,Bother ∪Brare)]≥Pr [CBrare = ∅] ·
&

i∈Bother

λiriwi ·ES∼B

6
1

1+wi +w(C−i
Bother

)

7

≥ (1− 2ε) ·
&

i∈Bother

ri ·ES∼B [π(i,Bother)]

≥ (1− 2ε) ·
&

i∈Bother

ri ·ES∼B̂ [π(i,Bother)]

≥ (1− 2ε) ·
&

i∈B̂other

ri ·ES∼B̂

8
π(i,Bother ∪ B̂rare)

9
,

where the last inequality holds since Bother ⊆Bother ∪ B̂rare. □
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EC.3.2. SAA Heuristic

Using classic linearization tricks, it is possible to reformulate the nonlinear integer program (3) as

the following linear integer program:

max
&

i∈[n]

&

k∈[K]

λiriwiz
k
i,i (SAA-IP)

s.t. xi ≤Mzki,j, ∀k ∈ [K], i, j ∈ [n]

zki,j ≤ yk
0 , ∀k ∈ [K], i, j ∈ [n]

yk
0 − zki,j ≤M(1−xi), ∀k ∈ [K], i, j ∈ [n]

yk
0 +

&

j∈Ck
[n]\{i}

wjz
k
i,j = 1, ∀k ∈ [K], i∈ [n]

n&

i=1

xi = 6

xi ∈ {0,1}, yk
0 , z

k
i,j ≥ 0,

where M is a large constant. The decision variables yk
0 and zki,j both capture the no-purchase

probability for sample k of the random consideration set C[n]\{i}.

Appendix EC.4: Estimation Case Study
EC.4.1. Catboost Implementation for Estimating Click Probabilities

The following function takes as input a pandas dataframe sales data, which has a row for each

product displayed to each each customer and whose columns give the various feature values. Fur-

thermore, there is an additional binary column (is click) indicating whether the given product

was clicked or not. The second input to this function is feature list; a list of column names corre-

sponding to the features that will be used to fit the catboost model. Note that in the code below,

we optimize over two hyperparameters, depth and l2 leaf reg, whose exact nature is formalized

next. These two hyperparameters were selected after extensive trial and error to find the hyper-

parameters that had the greatest effect on prediction accuracy. The depth parameter controls the

maximum depth allowed for any of the fitted trees and the l2 leaf reg parameters is the coefficient

of the L2 regularization term of the cost function that is minimized.

def Get_Click_Probs_Catboost(sales_data, feature_list):

# Get feature values (X) and response (y) for each customer.

# Convert both to numpy arrays for catboost

X = np.array(sales_data.loc[:, feature_list])

y = np.array(sales_data.is_click)
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# Hyperparameter tuning

params = {’depth’: [3,4,5], ’l2_leaf_reg’: [1,4,9]}

# Instantiate a catboost model, and fit with X and y.

# We do 5-fold cross validation (cv=5) to get the best hyperparameters

cb = CatBoostClassifier(logging_level = "Silent")

model = GridSearchCV(cb, params, cv = 5).fit(X, y)

return model

EC.4.2. Additional Estimation Experiment with the Mixed-MNL Model

Figure EC.1 displays the results of an additional set of experiments where fit mixed-MNL models

with G ∈ {1,2,3,4,5}, where we assess the accuracy of each fitted model based its improvement

over a traditional MNL model in terms of out-of-sample log-likelihood. It is important to note that

these experiments used a new collection of randomly generated train/test splits, and hence the

results presented here will differ slightly from those presented in Section 6.5.

EC.4.3. The Cost of Model Misspecification

In this section, we evaluate the gap between the MNL and click-based MNL choice models from

a decision-making standpoint. Since the click-based MNL model generalizes the standard MNL

model, and its fit to historical data is significantly more accurate (see Table 5), we wish to estimate

the operational cost of a model misspecification. Does our generalization of the MNL model generate

significantly different assortment recommendations? We quantity the potential loss of revenue in

using the standard MNL model in place of the click-based MNL model, when the latter forms

the ground truth. For this purpose, we propose a generative model that mirrors the real-world

assortment optimization setting faced by Alibaba whenever customers claim a coupon. For the

instances that we generate, we take the viewpoint that true purchasing patterns are governed by

a click-based MNL model, and we study the cost of making assortment decisions according to an

MNL model.

Experimental set-up As explained in Section 6.1, when a customer lands on a seller’s page and

then clicks on a coupon, she is brought to a coupon sub-page where six products are displayed.

Since Alibaba’s objective in this setting is to maximize the revenue garnered from each customer

who claims a coupon, the problem of choosing the six product displays can be formulated as a
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Figure EC.1 Percentage improvements in out-of-sample log-likelihood of mixed-MNL models with

G∈ {2,3,4,5} over the MNL model.

cardinality-constrained assortment optimization problem. We focus specifically on replicating the

assortment problems faced by Sellers 7 and 10, whose summary statistics are provided in Table 4.

For this purpose, we model the collection of products available to each seller as those that have been

offered at least once in our data set. The 25-dimensional feature vector characterizing a particular

product is randomly generated from the product-specific empirical distributions induced by our

historical data set. Combining these feature vectors along with our fitted models (see Sections 6.3

and 6.4), we jointly instantiate a click-based MNL and a standard MNL assortment optimization

problems. The optimal assortment associated with the standard MNL model is computed using

the linear programming formulation of Gallego et al. (2015) and Sumida et al. (2020). In order

to compute assortment recommendations for the click-based MNL model, we employ the updated

PTAS detailed in Section 5.2 with ε∈ {0.05,0.04,0.03}.

Next, we compare the expected revenues of the assortments recommended by the MNL and

click-based MNL models. Assuming that the fitted click-based MNL models prescribe the “ground-

truth” purchase probabilities, we compute the revenue loss incurred if Alibaba were to adopt the

assortments recommended by the MNL fits instead. The gap between these two recommended

assortments can be interpreted as the cost of a model misspecification with respect to these nested

families of choice models. That is, this is the loss of revenue from applying a standard MNL choice

model in settings where customers follow a more general two-stage choice-making process. Clearly,
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this performance gap does not realistically measure the extent to which revenue would increase

if a platform such as Alibaba utilizes the click-based MNL model vis-a-vis the standard MNL

model – this difference can only be measured by conducting a controlled experiment. However, such

simulations indicate the degree of dissimilarity between the assortment recommendations generated

by these two choice models. Indeed, the gap of predictive performance observed in Section 6.5

does not necessarily imply that the click-based MNL model should be credited with significantly

better assortment decisions than the MNL model. At face value, it is entirely plausible that optimal

assortment decisions are insensitive to the underlying choice model, given the notorious robustness

of the MNL choice model in applications and the similarity with the click-based MNL model.

Instance generator. For each of the three sellers, we randomly generate 100 instances, jointly

describing the click-based MNL and standard MNL assortment optimization problems, using the

following procedure. First, we generate a vector of 25 feature values (x1
i , . . . , x

25
i ) for each product

i offered by the particular seller, using product-specific empirical distributions derived from the

sales data. Specifically, using the notation of Section 6, each feature value xj
i is sampled uniformly

at random from the historical data {Xj
it : t ∈ [τ ]}, where Xj

it is the j-th coordinate of the feature

vector Xit describing item i ∈ St offered to customer t. Next, we utilize the resulting product

features and the estimates for the model parameters β and the function g(·) obtained by solving

the MLE problem described in Section 6.3 to specify the MNL weights wi and the consideration

probabilities λi for the click-based MNL model. Similarly, we utilize these product features and the

MLE estimates obtained by solving problem (MLE MMNL) to specify the preference weights of the

standard MNL model. Finally, since precisely six products should be chosen, we add a cardinality

constraint to the assortment problem, that forces any feasible assortment to contain exactly six

products.

Results. Let SPTAS be the assortment returned by algorithm PTAS, and let SMNL be the assort-

ment recommended by the fitted MNL model. In Table 3, we report the average optimality gap of

the assortment SPTAS over SMNL for each seller over the 100 generated instances. More formally,

we define the optimality gap of assortment S ∈ {SPTAS, SMNL} as R(S∗)−R(S)

R(S∗) , where the optimal

assortment S∗ is computed via complete enumeration over all feasible assortments. It is important

to note that R(S) stands for the expected revenue of assortment S under the fitted click-based

MNL model, and thus, we compute the optimality gap assuming that the click-based MNL model

is the ground-truth.

Table EC.1 reveals that the optimality gaps of the assortments recommended by the click-

based MNL model are generally between 6-9% smaller than those observed under the assortments

recommended by the MNL fits. This suggests that the two choice models lead to significantly

distinct assortment decisions. Interestingly, the optimality gaps observed for these Alibaba-inspired
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Avg. % Opt. Gap
Seller n ε PTAS MNL

0.03 0.62 7.60
7 49 0.04 1.04 7.60

0.05 0.90 7.60
0.03 0.039 9.34

10 38 0.04 0.061 9.34
0.05 0.016 9.34

Table EC.1 Percent optimality gap of

the assortments SPTAS and SMNL.

instances are slightly larger than those observed in Section 5, where the performance of PTAS was

tested on synthetic instances.


