{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Steph Curry Shot Analysis\n", "\n", "\n", "In this practice, we will answer the questions posed at the beginning of the Powerpoint lecture. We will plot the Curry's cumulative field goal percentage over each game. Then, on the same axis, plot his cumulative average distance from closest defender (for each shot) over each game. " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Import pandas,numpy, matplotlib here here\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fgmclose_def_dist
Date
2014-10-2903.3
2014-10-2914.2
2014-10-2904.1
2014-10-2915.1
2014-10-2914.4
\n", "
" ], "text/plain": [ " fgm close_def_dist\n", "Date \n", "2014-10-29 0 3.3\n", "2014-10-29 1 4.2\n", "2014-10-29 0 4.1\n", "2014-10-29 1 5.1\n", "2014-10-29 1 4.4" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Read in the data here - make the date the index\n", "df_curry = pd.read_csv(\"../Data_PreLab_and_Practice_Notes/Stephen_Curry_Shots.csv\",\\\n", " parse_dates=[\"Date\"], index_col = \"Date\")\n", "\n", "#Sort the data frame by the index using sort_index\n", "df_curry.sort_index(inplace = True, ascending = True)\n", "\n", "df_curry.columns = df_curry.columns.str.lower()\n", "\n", "df_curry.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we need to find the number of shots taken and made by Curry in each game. The method cumsum() might be useful." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MadeTakenFG_Percentage
Date
2014-10-297.017.00.411765
2014-11-0117.036.00.472222
2014-11-0223.054.00.425926
2014-11-0532.072.00.444444
2014-11-0845.091.00.494505
\n", "
" ], "text/plain": [ " Made Taken FG_Percentage\n", "Date \n", "2014-10-29 7.0 17.0 0.411765\n", "2014-11-01 17.0 36.0 0.472222\n", "2014-11-02 23.0 54.0 0.425926\n", "2014-11-05 32.0 72.0 0.444444\n", "2014-11-08 45.0 91.0 0.494505" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Resample daily\n", "df_shots = df_curry.fgm.resample(rule=\"D\").\\\n", " agg([\"sum\", \"count\"]).dropna()\n", "df_shots.columns = [\"Made\", \"Taken\"]\n", "\n", "#do cumulative sums\n", "df_shots_cumulative = df_shots.cumsum()\n", "\n", "#compute FG percentage\n", "df_shots_cumulative[\"FG_Percentage\"] = df_shots_cumulative.Made/\\\n", " df_shots_cumulative.Taken\n", "df_shots_cumulative.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now do the same thing for the average distance from the closest defender. You might find the expanding() method useful." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Date\n", "2014-10-29 3.800000\n", "2014-11-01 4.013158\n", "2014-11-02 3.877290\n", "2014-11-05 4.071857\n", "2014-11-08 4.098538\n", "Name: close_def_dist, dtype: float64" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_def = df_curry.close_def_dist.resample(\"D\").mean().dropna()\n", "\n", "df_def_cumulative = df_def.expanding().mean()\n", "\n", "df_def_cumulative.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we create the plot. You may find the ax.twinx() useful." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAEgCAYAAAB2AECvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNXWh98pmVSSkISaQEJJAqEI0gQEQq+CoIg0RdBr\nu+InioiKoqjYuChiQxAvIE0BlSJNIFSV3kMKhA5JIJmQMpMp5/tjbmY4mZnUSXW/z5MHzj77nLOn\nnd9Za6+9liI9PV1CIBAIBAJBpUZZ0QMQCAQCgUBQOEKwBQKBQCCoAgjBFggEAoGgCiAEWyAQCASC\nKoAQbIFAIBAIqgBCsAUCgUAgqAIIwRYIBAKBoAogBFsgEAgEgiqAEOx/KPHx8RU9hCJRFcZZFcYI\nYpyupiqMsyqMEarOOCsaIdgCgUAgEFQBhGALBAKBQFAFUFf0AFzNzp072bJlC1qtlvr16zNq1Cgi\nIiIc9k1NTWX69Ol27S+++CItW7a0bp87d47Vq1dz7do1/P396d+/P9HR0WX1EgQCgUAgsKNaCfbB\ngwdZtWoVY8aMITw8nJ07dzJv3jzeeecdAgMDnR734osv0qBBA+u2t7e39f8pKSnMmzePrl278uST\nTxIfH8/y5cupUaMG7dq1K9PXIxAIKie3byswmSp6FIJ/GtVKsLdt20aXLl3o3r07AGPGjOH06dPE\nxMQwYsQIp8f5+Pjg5+fncF9MTAz+/v6MGTMGgHr16nHhwgW2bt1aIsE2Go1kZWUV+zhX4+HhgVar\nrehhFEplHae3tzdqdbX6+QiKwN69Kt57z4M//1RTu3Zr1qzR06qVuaKHJShDUrNTef/A+8ztPbei\nh1J9BNtoNHLx4kX69esna4+KiiIxMbHAY7/++msMBgO1a9emb9++MiE+f/48UVFRsv4tWrTgwIED\nGI3GYt20jUYjd+7cwd/fH4VCUeTjygJ3d3c8PDwqdAxFoTKOU5Ik0tPTqVGjhhDtfwjHjyuZNcuD\n7dvdrG3JyRrGjFETE5NJQICoUlzdMJqNLDqxiA8OfIBWrxWC7UoyMzMxm834+vrK2n19fTl79qzD\nY9zd3Rk5ciRNmjRBpVJx/Phxvv32WyZOnMh9990HgFarpXnz5nbnNJlMZGZm4u/v7/DcjpYpaDQa\nateujV6vL8lLdDk6na6ih1AkKuM4PTw8uHr1Krm5uUDVWZYixlk8Ll5055tvgtm+3bEH7vJlJWPG\nSHz2WTwqVTkProhUlveyMCrTOA+mHmTOmTkk3inY2Ctvqo1gl4QaNWrILPKwsDAyMzPZvHmzVbBL\nSnh4uF2bVqvF09OzVOd1FTqdrtJZro6ozOP09/fHz8+P+Ph4h593ZeOfOM5Tp5TMn++OUglduxqJ\njjYSHOzcGpYkiItT8scfav74Q82uXWpMpoK9YX/+6cfPP7fkzTcrx4P43fwTP/PSkJKdwss7Xua3\nhN8qeigOqTaC7ePjg1KpJCMjQ9aekZHhdH7aEY0aNWLfvn3WbT8/P4fnVKlU+Pj4lG7QAqdotXDr\nlhKNxo369UEpFiAKisnVqwoGDfIhI8MiuMuXawAIDzcRHW2kRw8j9etLZGZCaqqS3btVbN/uxpUr\nBX/ZunQxotfD4cO22+enn3rQtq2JwYONZfeCBGXO+A3j+fPan3btPm6V415fbQRbrVYTGhrKmTNn\naN++vbX9zJkzxQoOu3z5skzgGzduzNGjR2V9zpw5Q2hoqJi/LCP0ejh/XgkoAA0mk5nQUDFHKCge\n77/vYRXru4mPVxEfr+K779yLdb7WrU289ZaO3r2N3LypoGtXD27d0lj3P/usFzt3ZtKkiQhCq4qc\nSjnlUKxHNx/N2/e/XQEjsqda2S19+/Zl//797Nmzh+vXr7Ny5Uq0Wi09evQAYO3atcyZM8faf//+\n/fz1119cv36dGzdusGXLFnbu3EmvXr2sfXr06EF6ejorV67k+vXr7Nmzh/3799sFtwksDB48mKlT\np5bqHHfuKLCItYXbt5WkppZtkN4PP/xAy5YtqVmzJrNnzy7TawnKnhMnlKxY4VZ4xyIQGWni+++z\n2bUrkz59jCgUULeuxIcfnkettj1IZmQoGD/ei0qwCERQAlbHrpZtN63ZlG2jtvF1/6+p6123gkYl\np1qZiB06dCAzM5ONGzdaE6dMnjzZugY7PT2dlJQU2TEbN27k1q1bKJVK6tSpw4QJE2Tz17Vq1WLy\n5MmsXr2amJgY/Pz8ePTRR/9Ra7CfffZZVqxYAVg8Gf7+/jRr1oxhw4YxYcIE3NxsN8Zly5YV2fMw\ne/ZsfvvtNw4cOCBr/18cl4wrVxR4eUl4eVm2W7VqxeXLlwFL8GBgYBCtWrVh7NhxDB06sFivLz09\nnVdeeYX333+fYcOGiamOKo4kwZtveiJJtoe8Bg3MBAebOXhQVeictIeHxP33G+nd20ifPkaaNjXj\naFFHmzaZzJqlY/p0W1zKmTMqJk/2ZOHCHIfHCConJrOJn8/9LGt7tdOrdKjXoYJG5JhqJdgAPXv2\npGfPng73TZw4UbbdpUsXunTpUug5IyMjmTFjhkvGV9ZI/3vgd/XNIjo6mm+//RaTyURqaiq7d+9m\n9uzZrFq1il9//dWabKZmzZqlvpYjwZYkBRcuKImMNJP3PPDqq68yadIkUlIMHD9+jZ07f2XChHGM\nHDmRefM+wb2IHs9Lly5hNBrp378/detWjidpQcnZulXN7t3yW9ucOTn062ckIwP277cEk1nEG7y9\nwcdHomlTM716GenSxUhRY0OfeSaXI0dU/PSTzTW+Zo2GBg3MvP22Xoh2FWHvlb1cy7xm3fZ282Zw\nk8EVOCLHVDvB/qdiNkNysoLUVAUKBTRsaKZGDded393dnTp16gBQv359WrduTa9evejRoweff/45\nr7/+OmBxiUdFRfHJJ58A8Ntvv/Hhhx9y/vx5PDw8iIqK4ocffmDbtm189NFHANalcV9++SVjx45F\nr3d8l8vNVXDxopLGjS1zhN7eNdDp6mIwKImKCiUqqjMNG0bwn/+8yH33DaNv327UqSORknKNN998\nkz/++AOATp06MXv2bJo0acKPP/7I888/D0CbNm0AOH78OKGhoa578wTlxqZNaqZMkattdLSBvn0t\nwWC+vjBggJEBA1wTHKZQwGef5XD6tIozZ2zruj77zAOdTsHs2Toh2lWAlWdXyraHNB2Ct5u3k94V\nhxDsSoD/Z47XcpcV6f+X7pLzREVF0bt3b9avX28V7Lu5efMmkyZN4q233mLo0KFkZWVx6NAhAEaM\nGMHZs2fZsmULGzZsALCuoXdkYeeRkaHgxg0FkgQpKQpu35aHYQwa9DjffTeTmJjfaNOmB1evZvGv\nfz1A584d2bhxIxqNhi+++IJhw4bx999/M2LECOrWrctDDz3Ejh07CA4OJigoyCXvj6D8uHpVwbRp\nnmzYIJ+3VigkZs0qW9H09oalS7Pp1csHrdZ2oW++cUevhzlzdGKVQyVAZ9Tx3fHvSM5OpllAM+6t\ney8RNSPQm/SsT1gv6/tos0craJQFIwRbUCqaNWtGTEyMw33Xr1/HYDAwbNgwGjZsCCDLGpeX3jPP\ncgcwmcBotN30FArLvHVWlq3txg0FBoMCowMjSaVSERLShOvXkwDYvn0NRiM8++w3BAZCrVoSn332\nGU2bNmXLli0MHz6cgIAAAAIDA2VjEVR+TCZYsEDD++97kJlpr8qTJuWWS+rQJk3M/PJLFsOHe5Ge\nblPnxYvd0ekUzJ+fU2kTq/xTePL3J9mQuEHW5u3mTUPfhmQaMq1tdb3r0r1B9/IeXpEQgi0oFZIk\nOU2z2qpVK6Kjo+nSpQs9e/YkOjqaYcOGFWjB5reu1WqJsDCJc+eUdwm5/fU8PCRCQ83k5ChQKGyR\nu3Fxx7h+PYn+/etbjvzfoTpdNhcuXCjqyxRUQo4dU/J//+fJsWP2tzGVSuL553N5663yy5LXtq2J\nDRuyePBBb1JTbaK9YoUGvR6+/TYHN9cErlcIlzMu8/ru1zmVcooGvg1oFtiM5gHNLf8GNsffo3w9\nhcXhr2t/2Yk1QJYhi7O35JkwH458GJWycj5dCcEWlIrY2FjCwsIc7lOpVKxbt46DBw+yY8cOli5d\nyjvvvMPGjRtp1aqVw2PyC7abm4RGA2FhZhIS8tZmywkKMhMcLKFUgru7katXE3jggXao1RKSZKZp\n09a89dbifEdJNGzoTyXJEisoBnfuWNZYL1igwWy2/z60b29k7tycCinK0bKlmY0bsxg2zJsbN2yi\nvXatBr1eweLF2Wg0BZygkrIhYQP/3vZv0vWW6bQL2gvsvrxb1qeedz2aBTazCnizAMv/fd19HZ2y\nXPnPwf8Uue8jzR4pw5GUDiHYlYCSzilnZ8O5c86fBP38JGuAVllw5swZ/vjjD1555RWnfRQKBR07\ndqRjx45MmzaN++67j3Xr1tGqVSs0Gg2mfDUKc3PlN2CNxgwoqVED6teXuHbtbnc5NGpk4u507kuW\nLEGr1fLoo0OJijLTrl1rduz4GT+/QHx85BaAyQRxcZIQ7SrEhg1qpk3z5OpV+0lhX1+Jt9/WMWFC\nboW6nyMjzWzalMXQod6yrGkbN7rx73978u23VWfJl86oY8aeGXx3/LtC+17Pus71rOvsvLRT1h7s\nE2wT8f/9GxkQiY+mfJZPnkg+wZYLW2RtXYK7cO72OW7l3JK1dw3uSqtajo2JyoAQ7CpM/jlclUqS\nrTHNznbdtfR6PTdv3sRsNpOamkpMTAz/+c9/aNOmDS+88ILDYw4ePMiuXbvo3bs3tWrV4sSJE1y9\nepXIyEgAGjZsyOXLlzl27BgNGjTAx8eH3FwPPvjgXwC8/voC3Nxs7u3atSXMZjNpaQqUSvDyykCv\nv8mVKwauXr3KL7/8woIFC3jqqae4//77AXjqqZEsWfIF7777KI899gaBgQ1ITr7Cvn0bGTp0EiEh\nTR0mZfn77795/vnn+e6776zR44KK4/JlBa++6snvvzv2KQ8fnsvs2Trq1q0cGfEaNzazaVMmQ4d6\nk5Rke3pYvVpDcLBlyVdlJyEtgSc2PcHJlJOlOs/VzKtczbzKHxf/kLU3qNHAKuI1jTWJ9o0mIiDC\n5dHZcw/Kq2x1qNuBjQ9vBOBSxiWO3jzKiZQTeKo9efKeJyu8kmJBCMGuwtwdnAXg4wMZGZI1YYTB\noMBgwCXzZrt27SIyMhKVSoWfnx/NmzfntddeY8KECWic+Ph8fX3566+/WLBgAVqtluDgYKZOncqo\nUaMAGDp0KOvXr2fYsGFotVq+/PJLOnceT3LyZes57hZshQLq1ZOoV09CrZaYM+dj5sz5GI1GQ1BQ\nEG3atGHp0qUMGjTIeoyXlxe//76JmTNn8s47j5GRkUFgYD3uuacbNWpYLG5HwUrZ2dnEx8eTk5NT\n+jdPUGJOn1aybJmGJUs0ssDDPBo2NDNnTo512VZlomFDiU2bshgyxJvz522iPXeuB8HBEk8+WcBy\niApm1dlVTNkxhSyDPG2bWqnmjc5v0KRmE2JvxVr/4tPiMZgNxbrG5TuXuXznMluTtgLwzvF3UKAg\n1C/UOj/ePKg5LYNaEl4zHDdV8W9k8bfj+SX+F1nblI5TrKIc6hdKqF8oD0Y8WOxzVwSK9PT0yvFI\n+g9Aq9UWqxBJYdy8qeDaNZvLrVYtM5mZCnJybDe2Jk1M+DqYQipqFaw7dyA5WYmbm0TdulKZz7/F\nxipl4w8NzSEgwLUXzavIlJ1tu07NmmbCwor3U8j7PCtLpaHCKI9xZmTAL7+4kZCgIjPT8jCUkaEg\nM1Nh3b5zx7Lt6ytx770mOnQw0r69ibZtTXh7w5Ej5zl6tBnLlrlx9Khjm0KlknjhBT2vvqq3Zr8r\nb4r6fl64oKRvX3kgmlIpsXRpdpkXCynJZ7709FJe2GbvNQv1DeX7Qd/Trq59lkeDycB57Xlib8Vy\nJvUMsbctQp6YnojRXPrX6K5yp3lgc1rWakmrWq1oVasVLYJa4Odufz+VJIkTKSdYfmY5P8X+xG3d\nbeu+FkEt2Dt2b6W2ogtCWNhVmPwucbUavLwkmeBlZ1tujCXBYLDcbCxudgV37kiEh5vLVLTzB51p\nNK5/nlQooE4dMxcu2KyetDQF9epJRc6OJpCTkwMLF2qYO9fdbm28M7KyFGzcqGTjRovlpFJJREaa\nSUy8B73e+Tk6dLAElbVsWTWKbDRqZGb16myGDPG2PiSazQqefNKL337LokMHUyFnKD/O3jrL1B32\ntQAeDH+Qz/t87lAgAdxUbkQGRBIZEMmw8GHW9lxTLglpCcTeiuXs7bOWf2+d5Xz6ecxS0T8/vUnP\nseRjHEs+JmsP8wujZZBFxFvWakmSNonlZ5ZzOvW0w/NM6TClyoo1CMGu0jgSbLUabt0VR2G5QZRM\n9NLTFbI58dxcBYmJSpo2NZfJ8hSjEdn1FApJVlzBlfj5WZaC6XS2pWI3bypo2FA4nIqDwQA//ujG\nxx97yLw9JcFkUsiyheUnIMDMm2/qmTAht1IlIknNTmXPlT3svrybkykn8dH40NivMY38G9HIrxGN\n/RvTrFUYixcrGD3ayxrZnpOjYNQoL7ZuzaJp04p/+Mg2ZPPExifQmWxL4dxV7nwU/RGPt3y8REKn\nUWmICooiKihK1q4z6ohPi7e61A9dOsRl/WUupF9AKsb9KkmbRJI2yeGSrfy0CGrBg+FVw/XtDCHY\nVRiDQf4DcnOT7IS0NFOwaWn2P1Cdzibarq4uam9du/b8d2OxsiUuXry7Kpii2G7/HTvUbN5cj8ce\nU1YZi88VmM2wdq0bH3zgLpufdTUKhUTPnkbGjTMwaJCBIszilDkGk4Edl3bw65lfOf7XcYfW3C52\n2bV1Du7M8x/P5ItXbJX+bt9WMnCgN/37W3KYd+liJDRUqpAo8tdiXiP2dqys7bPenzE6arTLr+Wh\n9rC6tgHia1tc99mGbOLS4qxCfjr1NCdTTnIj60aJr+Xv7s/IZiN5peMrlXZ9dVERgl2FcWRhe3hY\nbnJ5gWe5uSULPMvNxWGQD1gsgzzRduXymfIUbICaNSWuX5esS8kkSUFysoKQkMKf8A0G2LdPzZgx\n3oA3ixdLrFqVTa9elSf4KSvL8hnWru06r4EkwZYtambN8uD0accffo0aEo8/nktoqBkfHwkfHwlf\nXwkfH0uRjRo1JLy8JC5eVHLokJq//1Zx6JCKxETb+Ro2NDN2bC6jR+dWKq/HsZvHeGrzU8SnxRf7\n2ANXD3CA/jR98wESvv4UbkUAkJJiCaxbtszyhQ8JMVvFu2tXk9NqYa5kzbk1LDm1RNb2aPNHy0Ss\nC8LLzYs2tdvQprZ8ZUZKdgqnUk5xMuWk9S8uLc6pW12pUNIntA9josYwsPFA3NXVY65LBJ2VI64O\nOjt1SimzsqOiTLi72wduOQo8KyzoLH9AmyN8fCzrvF0l2snJCtn62qAgM7Vq5RQpOK6kpKYquHxZ\nHgzUokXB3oP0dLh8Wcn+/ZlMm1bP2u7tLfHbb1m0a1fxc5J796oYM8abjAwFPXoY+fTTHOBciYLO\nzGZLfemYGDW//ebG4cOO3xx3d4mnnsrlpZf0BAYW/7Zy65aCU6eUaLWXGDIkuFK5vU1mE/MOz+P9\nA++7JIhKIamR/n4GYt6G7IJz19eqZWbcuFxmzNAX6z25nXObdX9vYHjHIQR4Bjjtdz79PD2W9+BO\n7h1rW9OaTdk1ele5rZUuSXBcjjGH2FuxVgE/lXoKtUJN37C+PNL8kUpTw9qVCAu7nCkolWfxzmNv\nYedZ0a4IPMvvDq9f34xWq5BZ3ZmZCpKSlDRqZHbJzbW8LWyAgACJGzck64OP2WyxsuvXt3+/jEZL\nXe60NCUgodXK92dlKRg50ovNm7OIiKhY9/isWR5kZFheU0yMmq5dfXj88frMmkWR3MpJSQp27bKU\noYyJUf/vNTtGpZIYPz6XqVP1BAeX/Pk/MFCiRw8T8fHZlUqsL2dc5uktT7P/6n6H+xUoaF27NT0a\n9KBrSFcMJgMXtBe4kH6B89rznE8/z6WMS7JjJIUROs2He5bAgSlwbAJoHVeIS0lRMneuBzVq36LV\ngAMEeAbQxL9JgalAfzi6gik7pmBW5TD10DQeDp7MnBH/poZGXsJPb9QzcdNEmVi7q9z5fuD35SbW\nJcVT7UnbOm1pW6dtRQ+l3BAWdjliNBq5c+cO/v7+pRZtoxFOnrSZtiqVROvWFpHIbzU6ynhWkIWt\n08HZs3ebzRItW1pEOSFBvhwq7/yNGpXebZeYqLSKDFjSkXp6lq2FDfaWvUplsbLzPAcGg6VK2LVr\niv+tfZc4f17LtGm1SU21f6oICTGzZUtmqcSrNOh00KCBr12MA1i8Lf/5Tw49eti8AHfuQEKCithY\nJX/+aRHpixcLV0yFQuLhhw1Mn653aUY9R9aWwWRArVSXSYRvZm4me6/sJV2fjq/GF193X+u/B68f\n5OUdL5ORm2F3XP/6/Rl771i6hXSjpkfBdeD/vPYnb+5+k0M3Djnt45vWjewD4zGeGAm6fGIc8ieK\nsUOQPG0RpUGeQYTXDKdJzSY09W9q+bdmU74/8b3DzGSa3Dq80PJ1pg8Yi1ppsdWmx0zn66Nfy/p9\n0vMTnrrnqQJfj6upKksjKxoh2OWM0WgkKyur8I6FoNUq2LzZNjFdo4aZQYMsJvft2wq2bbPt8/Y2\nM2SI3BzPyMiwlrPMz6lTKtn8ZJ06ZqKjLcfn5sLOnWpZRSKA0FATnTqZSiXaW7bIz9u3rwG1Wut0\nnK7CYICNG9WypUSNG5twc7NMDdw9JkmyWNYLFgSi1brx2mt6Ll9O44cf6snO2by5iU2bsqhZs/x/\nXocOqejTp2DrqH9/A3o9xMerHKb5LIz+/Q3MmKFzaaCd3qhna9JWDsQfQO+u58qdK1zLvMa1zGvc\nyrmFj5sPXYK70K1BN7o36E6rWq1QKkpuikuSxNq4tUyPmU5ydnKRjwvwCGBen3lESpHFEhlJklgX\nt46Z+2baWdx346Zwp6l5EG5nxnHmt8EY6/wNYweBe6bTY4qDry6K5ztOYvettey7uk+2b0iTISwd\nsrTclz5VtGDHxio5dkxFQoKSpCQlPj4Szz2XW+GesvwIwa6i7Nmj4oEHbDfl++4zsnmz5UFAp4OQ\nEF9ZJrTz5zMICLB91M5+IJIE7dv7yAKA5s3L5rHHbFmMUlIUDBrkTXy8fPL6scdy+fzzkuVJliTL\nmO92uSckZJCWFlcuP+SPP3bngw+Kbsm3bm3i66+zadHCTFxcPF9+2Zr//ldubXfqZGTduqxyT+yx\nYIGGV1/1dOk5/fwkunc3Eh1tpGdPo0starNkZu25tby7/90ChSw//u7+3B9yP90bdKdbg240C2jm\nUGgy9BnczLrJbd1t0nRp1n93XNxhly6zMHo17MWX/b6knk+9EouM3qhnwfEFfPr3p2j12gL7epgD\n0RlzQOPCPMNOCKkRwt6xeyuk6lZFCvZ777nz6af2v303N4mXXtIzZYq+UqxOADGHXWVJSZFbFrVq\n2cTYwwOaNTNz6pRNUI8dUxUpgvmnn9xkYu3mJjF0qDzlYK1aEr/+msXAgT4y1+mSJRq8vCRmz9YV\nW7Rv35bPj3t7SwQGSqSlFe88JeVf/9LzxRfu3LlT8MDVaompUy0/4ryYAYUC5szJITVVYU0CAvDX\nX2qeeMKLZcuyy7Ws4uHD8gepV17Rcfu2gu+/L3qkrEYjcd99JqKjLSJ9zz2mMimose/KPmbsmcGR\nm0eKfWy6Pp0NiRusa3Bre9WmW0g3ujXoRqf6nThy4wgrzq5g75W9pR6nRqVhZteZPNP2mVJZ9QDu\nandeaPcC41uM5+dzP7Pq7CoO3jjosK9OeQvyzboEKhpzR3mFXFMhqU3TwmDdEtyabcHQ4T/g5nyN\np7vKnUUDF1XqEpllwdKlbg7FGizLZj/+2IO1a92YOzeHbt0qPphUCHYVJTlZLiy1asktnjZtTMUW\nbK0W3nxT/uUdNMgoq4aVR/36Er/+msngwT4yl+o337jj7S0xY0bxihvknzNt2LDsl7Lcjb8/TJqk\n57PP7H+8CoVEmzYW8Ro92uDQTaZWw6JF2Tz0kDf79tl+Vlu2uPHCC5589VUOSqXFxZ6YqKRDB1OZ\nifiRI3JljY42cv/9Jrp0Oc9//hNhl5xEqbTEIEREmGne3ES3biY6dTJaPQOSJHHk5hFWx65mQ8IG\nrmVew0PtgbvKHQ+1BxqVBg+VB+5qd+u/3m7e+Hv4U9O9JjU9bH/+7v7U9KiJhMTcg3PZdH6Ty153\ncnYya+LWsCZuTbGP1ag09G/UH71RT0ZuBhn6DDJyM8gx5tCxXkfe6PwGLWu1dNlYAfw9/Hnynid5\n8p4nSUxLZFXsKlbHriZJm+T8oO0f4Jk0jd9+ysC7/kUS0hJISEsgMT2R+LR4EtISuJp2C+ncENjw\nNeQE8u3Mdhi9HuPVze+THroUFPmcqol9aHxtFquT2nK2lYlWrSzfg4pK+Vpe/PmniilTCvdEJSRY\nvJnp6QV7Q8oDIdhVlPwVpu62sMEi2MuW2baPHSvcPJo924PkZJtwajSWcoXOCAuT+OWXLAYN8pZZ\n/HPmeODlBS+/XHTRttS6ttGwYfnPHb3yip6jRy1R0WFhJqv7t1s3k2w6wRkeHrB8eRaDB/vIHpZW\nrtTg42NZ7/3jj26YTApatjSxdWumy2+KWi2yqQql0vKwAXDPPVnExGSydq0b168raNTITGSkmUaN\nzA5Tsp5PP8/q2NX8FPsTiemJsn05xhxyjDng4qJTaqWagfUH0rlxZ4JrBFPfpz71fepT26s2CekJ\n7L68mz2X91iDxFxB1+CuzO09l4iACJecryQ0qdmE1zu/zvT7pvPX9b9YfXY1a+PWyl/jljlwYApX\ngK6d/Wnf3odx48IZPdxA3mrRAwdUDBxomyrz8DDRv78Bb+86PNxvHnNXPMMnh2ajq3kYLvaA/a/A\n9Xs5C5y9azxKpUSzZmaeeiqXCRNyK305UJ0Odu1Sk52t4IEHDIU+DF++rGD8eC9ZYKanp2VZYkCA\nma++cpepxzzPAAAgAElEQVTdCysLQrCrKPm/TPmTY+TdpPM4frxgwT55UsmCBXLf24svFh79Gx5u\nZt06S0Wiu4OzZs3ywMtL4tlni1aRKL8bNyqq/N1PPj7w669ZGI2UOIubnx+sWZNF//7ysooLF8oV\n8dQpFcuXa1xesSn/g1lkpBmfu+LP3Nxg1CjnVZVSslNYG7eW1WdXc/jmYZeOrTCGNh3K213fxpxq\ndjif2TywOc0Dm/N0m6cxmU2cTD3Jnst72HN5D/uv7ifT4Dwoq6FvQ4I8gwjwCLBY+h4WS79TvU70\nCu1VafJLKxQK7qt/H/fVv4/ZPWazLWkbp1NPc2p9H9Yf6CXre+iQmkOH1EyfLvHAAwbGjcvlt9/k\nStW9ezre3pYvs1IJL4+N4pkHl/Leex58s1ZjTbCUH7PZkib2pZc8+ftvFZ9/nlMuyyyLS3KygkWL\nNCxapLEWV2nf3sivv2bh7aRKZ1YWjB7tbTet+NVXOQwfbvltTJiQy8yZHvzwQ+VKuCIEu4qS3yUe\nFCQX1hYtTLL62BcvKklLUziMWpYkmDrV05rjGCwW7pQpRTOfWrY0s3ZtNsOGecvmgKdP98TbW5IF\nrDkjvxu3IpOPlDblap06EuvWZdOvn/1N4W6WLnW9YB85Ih/8vfcW7X28eucqr+56lc3nN2OSyve9\nb1+3Pe91f4/76t8HQHxq4VnEVEqVNSPWC+1ewGAycPTmUWtO7xMpJwjwCGBY+DAebf5ohVrPJcVd\n7c6QpkMY0nQIqU0VnNpkkhWsySMnR8Hq1RpWr7ZX1L5904BasjZvb5g9W8eIEQZeecWz0If5FSs0\nXLmiZOnSLIfTYxXB6dNKvvrKnZ9+crNmKszj0CE1zz/vyeLF9gGwZjM8+6yXzAMGMHWqzirWYJki\n++wzHaNGGXjpJU9iYytHSlMh2FWU/C7x/Ba2p6cl8Ozu5VnHjyuJjra/Ga9c6caff8q/Ch99lINn\nMQKN773XxOrVWTz0kLdsnfaLL3ri4QGPPOJctHNz4cSJyiPYrqBRIzM//5zFkCE+TgPZjh9XceKE\n0rp+Pj9mMyxf7kZiopL27S0uemdWQx75PRVFFezJ2ycXGDHtpnSjX6N+PNLsEfqE9QEs0c46k45c\nUy46ow6dSWdty8zNJE2XRpoujXRduvX/aXpbWwPfBjzZ+kmGhQ8rtYXrpnKjY/2OdKzfkZc7vlyq\nc1VGgoIk9u/PZP16N5Yt07B7d+G3bl9fic6dteQX7Dw6dDCxa1cmV68qOHVKxcmTeX9KuweDPXvU\n9Ovnw+rVWcUuQ+sqzGbYvl3NV19p2LWrYJ/3L79oaNHCzNSpcqPj44/d7bwQQ4ZYcgk4onNnE7t3\nZ/LFF5XD0haCXUUpzCUOcM89JplgHzumshPs9HR46y15oFX//gYGDix++sXOnU0sX57FI494y/Jz\nP/usJ8HBZrp2dSwep0+r0OttN+zgYDP16lX91Yb33GNm+fIsJk3yIjlZSb16Znx9Jc6ds30my5Zp\n+Phjx3ECn3/uzjvv2D4bDw+JHj2MDB5soH9/I3Xq2L9HR4/mf/Ap/HO8cueKU7HuEtyFUc1GMSx8\nmF0EsbdbIU8PApfi6Wl58H3kEQNJSQqWL9ewfLnF+nXE4MEG3N0L/h0pFBASIhESYmTAANt3JT5e\nySOPeMmEOy5ORd++PqxYkU379uX3QJ2dbYkD+fprjd1S0oJ4/30Pmjc3WXNQ/Pqrmg8/lN/rWrQw\n8c03BWfW02iKF49TlgjBroJIkmUt9N3kd4mDZR57+XLbtqPAs/ff95C5bT08JD76qOQlvqKjTfz3\nv9mMH+9lXQduMin49FN3unZ1vJb00KGSWYVVgW7dTBw+fIerV5U0aWJm40Y1EybYhG71ajfefVdn\nt87z9m0Fc+bIn+p1OgVbtrixZYvFQmjf3sjAgUYGDTLQrJmZGzfkGds0GomoqMKD99bFrZNt1/Wu\nyzNtnuGhyIdo4NuguC9ZUA6EhUm8/rqe117Ts3u3imXLNKxf72Z98FUqpVJNt4SHm9m+PYsxY7z4\n6y+bTKSkKBkyxJsBAwxoNKBSWeIi3Nwk2f/zSv26uVmWQtr+b9m29LPtS0nx49IltXWfWm2Zc//9\ndzXff68pMDVuaKiZZ57R062bkaFDvWX12J95xostWzJRq+G55+QRnoGBlgdqHxdmYN20aRPr1q2j\nZ8+ejBkzptD+N2/eZNasWQDMnz+/0P5CsKsgWVnIcoW7u0t2xT3APvAsv2AfP65k0SL5vNdLL+lL\n7fIaONDIt9/mMGmS7Qdy4IAanc5xHuv8btz27StPxStXUKOGZXoCLO9NQIDZelNJT1eycaMbDz0k\nnzL44gsNmZkFu4nzgo5mzfIgLMxEZKRcnFu3NhUpUGjNOfkyqMntJvPcvc8VfqCgwlEqLQ/J0dE5\npKfnsG6dhrNnlQwcaKRdOxPxxS8qZiUw0JJv4bnnPFm71vZF0ukU/PKLqyPQip80pXNnI889p2fQ\nIKM1R8B//5vN8OHeVmMhM1PBmDHeuLtLsjwPbm4SS5dmExrqOk9eYmIiu3fvJiQkpEj9jUYjCxYs\nICIigri4uCIdU/ni1gWF4ihpiqMpwJYtTSiVti9kUpKK9HSLhb59e03GjvWWBZqFhZl48UXXuH5G\njDAQEmITEJ1OwV9/OXZn5Rfsqj5/XRDu7vbz+cuWyefUUlIULFggt679/Aq+sSQlqayWdx5t2xb+\nPiamJXIs+Zh1W4GC4RHDCz1OUPnw94cnnsjl44919OzpmodeDw9YuDCHKVOcL+8sT9RqiZEjc9m5\nM5Pff8/igQeMsoQ+3bqZ+Ogj+VgvXlQSFye/x3z0kY4uXVx3n8nOzmbRokVMmDABryKu1VyzZg0h\nISG0a9euyNcRgl0FKSxpSh5eXjbLLo8fftAwYIA306c3sZv7+ugje9dsSVEooEcP+U3DUaBMerrz\ndcPVlfHj5a7KXbvUXLpk+0znzXOXWQO1a5s5cyaDvXvv8MYbOu6918nNODQGJvSAFxtD91ncc2/h\nUxv5k4x0DelKPZ96TnoL/okolfDWW3rmzcvGza1iYkv8/c289JKO48fv8N13OQU+jE6alMvEic4N\nj9Gjc3niCdeuzli6dCn33nsvzZo1K1L/EydOcOLECUaPLl698WqXS3znzp1s2bIFrVZL/fr1GTVq\nFBERhS/pKGgu4a+//mLz5s0kJyfj4eFB8+bNGTlyZIG1reNL44sSVCtu5tzk8K3D3Mi5wQ3dDfQm\nPYNCBtEpqJNLzp9jzOHLc1+yKmmVrD3SN5KZbWbStEZTh8dJksSo3aO4kHnB2ja91XRGNBzhknEJ\nBNUJZ7nOd+/eTUxMDNOnT0etVvPJJ58QHBzsdA47PT2d9957j+eee47GjRuzb98+VqxY8c+bwz54\n8CCrVq1izJgxhIeHs3PnTubNm8c777xDYGCg0+MKmktISEhg0aJFjBw5kjZt2pCRkcHy5ctZuHAh\nL7/sfPlIWSayX7xYw0sv2dZcjRuXy/z5jq2pb7/VMG2a8/VZKpXEpEm5DgOfSsuNGwqaNbNNriuV\nEhcuZHD3c86nn7rz3nu2C48fn8sXX9heS0VX8SkKzsaYmZvJx399zFdHv8JollvFm65usmauAktJ\nzuPH7/Dmmx58/bXNHV63rpmjR+84XWK398pent/yby7eSbLbdy7jHI/ve5w5veYwvsV4u3GeSjkl\nE2u1Us1TXZ4iwDOgOC/f5VSFzxyqxjirwhihbMaZmqqgZ08fa6lhX1+JmJhMGjVyXRbFGzdusG7d\nOqZNm4a6iAkcFi1aRHR0NI0bNy729aqVYG/bto0uXbrQvXt3AMaMGcPp06eJiYlhxAjnVkPeXIIj\nwU5MTKRmzZr07dsXgFq1atGrVy9WrFhRdi+kEIrqEgf7wLO7GTjQwLvv6ggPL5s0oHXrSkRGmqzL\nmMxmBfv3q2VLxvJHiFeHgDNJklifuJ7pu6ZzNfOq8479Xwa/S7BlDleuqFi1yo3vv5cH80yZonco\n1lmGLN7Z9w4Lji0ocCy5plxe3P4iLQJbUIMasn35g816NexV4WItELiKoCCJTZsyefddD7KyFLzx\nhs6lYg0WfcjMzOTtt9+2tpnNZuLj44mJiWH+/Pm45cuTGhsbS1xcHOvXrwcs9wtJknj66acZO3as\nVb8cUW0E22g0cvHiRfr16ydrj4qKIjEx0clRtrmEGTNmcPiwfSrGpk2bsm7dOo4fP07r1q3JzMzk\n77//pmVL1xYCKA6F5RG/m1atTAQGmrl1yzZffc89Jp55JoHRo+uW2Rjz6N7dKFt3HBNjE2xJss9w\nVtWXdCVpk3h156tsTdpatAPu+xx8r8Dapbz4oqcst3FwsJnHHrOfa9t7ZS//3vZvh0UiwvzCaBHU\ngo2JG61tZsnMC9tfYGGHhdY2SZLs5q9HRApXuKB60aCBxHfflXyZamG0bduWsLAwWdvixYupU6cO\ngwYNcmh1z5w5U7Z97NgxNm3axOuvv45/Iankqo1gZ2ZmYjab8c23vsnX15ezZ886PCY9PZ0lS5bw\n3HPP4eHEH9ykSRP+9a9/sXDhQgwGAyaTiaioKCZOnFjgeMpyDvv8+caAzW1qNl8nPv620/5vvOHH\nvHkheHubGDkyhYEDb6FUQnz8nTIbYx4REf6AbQ512zYTkyZZ3pvr1zUkJ7e27vPwMKFWn7NbilIV\n4gFOx55myfkl/JDwA3qzfcBLHY869K7XGz83P5acX0KWMcu2M2oN+NzAsOJXMNimbsaPv8zlyynW\nbWdz1Xk8EvoI/272bzzVnrTzbse7J961jS/1NMvOL2OCcgIAJ9NOympPuyvdiZQiK817XVnGURhV\nYZxVYYxQ+cfpyGXv5eVlFxXu7u6Ot7c3wcHBAKxdu5YLFy5Yp1Dz2vNISkpCoVDYtTui2gh2SSjK\nXMK1a9dYsWIFQ4YMoUWLFqSnp/Pzzz+zdOlSJk2a5PS4spw3ys6WZ5hq1ao24eHO5+jDw2HixDxL\nLQAIKLe5rVq1YNo0ybp8LDHRCz+/CGrXljh9Wv71a9tWonlz+Ziqwhzcsv3LmBs3166iFVjmhZ9v\n+zxTO03FR2PJ0DAmZQyP/PII17Ou2zo23AeTusK6JXCtHSHBCqZM8UejsTxxF2ZVz+87n/tD7re2\nTQmfQmxuLKtjV1vbFsYvZFLnSTT2b8yiXYtk5+jfuD9to9qW5m1wGVXhM4eqMc6qMEaoOuMsCenp\n6aSkpBTesQhUG8H28fFBqVSSkZEha8/IyHAazV2UuYTff/+dsLAw+vfvD0BISAju7u58/PHHDB8+\nnICA8p/zy5/lrCCXeEXj72+ZR7+7KMWePWoeesjAoUPyr195pjt0BVq9lpd3vMzP5352uL9zcGfm\n9JxDVFCUrL1VrVZsHbWVkb+MJPZ2rG1H0Dl4qhPoa+Dj04nPj3aiY/2ObEzc6HSu+ql7nmLm/TMd\npgn9oPsHbE/azm2dxfuiN+v5vz/+j7XD19plN3so8qHivHSBQOCEqVOnyrYL88Z27dqVrl27Func\n1Uaw1Wo1oaGhnDlzhvbt21vbz5w543RhelHmEnJzc1HmSzSbty1JFSOU+ROnOMojXpno3t0oE+yY\nGItg2ydMqToBZ4lpiYz+bTRxafYZioI8g5jVbRaPNn/UaVGLBr4N2PzIZkauGcfBlL3yne53iDVs\n5/0D251e35FVbTcOryA+6PEBz2x5xtq2+/JuJm+fzM3sm9a2Gpoa9GvUz9EpBAJBJaJaJU7p27cv\n+/fvZ8+ePVy/fp2VK1ei1Wrp0aMHYJlLmDNnjrV/cHCw7M/f3986l+D9v7JIrVu35vjx4+zatYuU\nlBQSEhJYsWIFDRs2LHCpWFmh14NWaxMBpVJyWDKzMtGjh9xyjolRYzTa1+iuKhnO/kj6g14re9mJ\ntQIFE1tN5NDjhxgdNbrQClT+Hv5sGLWGuqmPFOv6T93zFPvG7StQrPMY1WwUPRv2lLUtP7Nctj2o\nySA81cUozSYQCCqEamNhA3To0IHMzEw2btxoTZwyefJkq7CWZC6ha9eu6HQ6duzYwU8//YSnpyeR\nkZE89FDFuBDti35IstR8lZFOnYxoNJK1gtfFi0p+/10tK8NZu7aZkJDK/eAhSRLzj8zn7b1vY5bk\ny0NaBrXk8z6f065u0dMMgqXm8YYnFtD3paGk1fsZTfhectWpDvsWxarOj0KhYG7vuXRe2pkco+No\n2YcihDtcIKgKVCvBBujZsyc9e/Z0uK+kcwm9e/emd+/eLhlfaSnOkq7KgpcXdOxoYu9e29dt7lx5\nrux27UwO86FXFnRGHS/+8SKrztpHaA+oP4DFIxaX2Ept2gQS1g1Bq32AmjXNxKfF8+e1Pzlw9QB/\nXvuTdH06o5uP5o0ub5SopGWYXxjT75vOW3vfsttX06OmnQUuEAgqJ9VOsKs7+etgF5Q0pTLRvbtR\nJth3z2lD5XaH6416hq4Zyt/X/5a1KxVK3rn/HfrX6F9ql7JKBQEBEqAgIiCCiIAIHmv5WKnOeTfP\n3fscP574kXMZ52Ttw5oOw03l5uQogUBQmahWc9j/BPJnOavsAWd55C8Ekp/KnOHs66Nf24m1r8aX\n1cNW80K7Fwqdq64MqJVq3mj9BkqF/CcvosMFgqqDEOwqRlV0iYMlg5mPj/Ox5k+h+tnBz2izuA2T\n/57M9qTtFRaRD7A2bq1sO7xmODtG76BPWJ8KGlHJaO7XnNfue8263SW4C11DiracRCAQVDzCJV7F\nqKoucTc36NrVaFezGSAiwsTdGfmOJR9j5r6ZACSRxMO/PEyb2m14uePLDG4yWGYlSpLE2Vtn2XVp\nF/Fp8XSq34lRzUa5zOq9nHGZEyknrNsKFKx/eD11vcs+rWtZ8GqnV+lUvxOp2akMbDzQzuIWCASV\nFyHYVYyqlDQlP927Oxbs/PnDD1w9YNfnWPIxxm8YT/PA5kxuNxmTZCLmUgwxl2NIzk629lt8cjEa\npcZlebE3X9gs2+5Uv1OVFes8ejToUdFDEAgEJUAIdhUjv2BXlTlssAi2I/JnODufft7pOc7eOsuz\nW58t8DpfHf3KZYK9KXGTbHtg44EuOa9AIBAUF+EPK2dKOxVbVV3iAC1amAkMtB9v/gjxggS7KBy6\ncYhzt88V3rEQtHote6/Is5ANajyo1OcVCASCkiAEuxzZtUtF06Y1qFvXl2XLSraUpiq7xJVKeyvb\n3V2iRQu5YOcvorFwwEJGRo50Ot/q4+ZDkGeQrO3H0z+Werzbk7ZjMBus2+E1wwkPqJ4FCgQCQeVH\nCHY58tZbnty6pUSnU/DGG57k2pc6LhCTCW7dqrqCDfbLu1q3NqHR2LZzTbmyso8AA5sM5LuB33Ho\n8UM81vIxQmqE0Ll+Z1677zU2P7KZC89c4L3u78mOWXl2JQaTgdLw+/nfZdvCuhYIBBWJmMMuJyQJ\nYmNtz0darYLbtxXUrVt0wb19W2EtUwng72+WiV1VYOhQI++/b7YWMBk/Xv7UcinjkiztZy33Wtbs\nXo39GzOvzzzH5206lKk7p3In11LjOzk7me0Xt5d4ztlgMrD1wlZZ26AmQrAFAkHFISzsciI7G2su\n7Tx0uuKdI3/SlPzWtVkysyFhA7su7cJkrpyZwwICJH79NYuXXtKxcGE248bJreD889cNvBsU6bxe\nbl4MjxguayuNW3zf1X1k5NpKtQZ5BtG+bvsCjhAIBIKyRQh2OXH7tv26YL2+eGuFC0ua8syWZxi3\nYRwPrn2QDw58UPxBlhNRUWbeflvPww8byFe51G7+uqiCDTAuapxse/OFzaRmOy6kURgbEzfKtgc0\nHoBKWcmrrAgEgmqNEOxywpFgF9/Czl8H2+Y6zszNZM25NdbteYfnkaZLK94FKgEltbABOtTrQHhN\nW1CY0WxkVax9sY7CkCRJzF8LBIJKhxDsciItzZFgF8/CLsglfivnFibJ5gY3mA38Fv9bMUdZ8dgJ\ntlfRBVuhUDA2aqys7cczPxY7renJlJNcuXPFuu2p9iS6YXSxziEQCASuRgh2OXH7tv1bXVwLu6Al\nXVq91q7/z+d+Lt4FKgGlsbABHo16FJXC5ro+k3qG48nHi3WOTeflyVKiG0bj5eZVrHMIBAKBqxGC\nXU44srCLO4edF1mdx90ucUeCvffKXq5lXivWNSoSg8lgt6QrxCukWOeo613XrijHstPLinWO/NnN\nRHS4QCCoDAjBLidcMYed38IOCrJZ2HdHNOchIbEubl3xLlKBXMq4JHPr1/OuV6I602Oixsi2fzr3\nEzpj0d7sK3eu2BX7GNBoQLHHIBAIBK5GCHY54Yoo8YJqYTuysAFZIFplJ3+EeCP/RiU6z8DGAwn0\nDLRua/VaO6vZGfmDzTrV70Qtr1olGodAIBC4EiHY5YQjwc7JKd45UlOL5xIHOHLzCIlpiQ73VTby\nz1838W9SovNoVBpGRo6Utf14pmhrsu3c4SI6XCAQVBKEYJcT6emls7Alyd7Cvtsl7kywAdbEVQ0r\n+7xWLtiN/RuX+FxjW8ijxXdc3FFoQRBHxT5EdS6BQFBZEIJdTpR2DlurlWdK8/KS8PG5a38Bgv1z\n7M/FXtpUEZxPc51gt6rVita1Wlu3JSR6Lu/J/CPzMZrty3weuXGEh9c9LIp9CASCSosQ7HKitHPY\n+d3h+bOcFSTYcWlxnEw5WeRrVRSutLABHm/5uGw725jNm7vfpM/KPtalXjeybvDc1ufotbIXB28c\nlPUX7nCBQFCZEMU/yonSWtj2SVPkdaXzC7aHygOdyXaBNefW0Lp2ayoD25O2899T/yXXlEtD34bW\nv4vai7J+jf0bcy295MvSJrSawI5LO+zSjB5LPkavFb0YFj6MrRe2kmnItDvWV+PLhFYTSnxtgUAg\ncDVCsMsBk6n0c9iF1cHOL9gjIkew/Mxy6/aauDW8ff/bTmtKlxcJaQmMWz9O9jDhiLreda1VukqK\nSqli6ZClLDu9jBl7ZsjeI5NkYm3cWofHDW4ymPe7v0+YX1ipri8QCASuRLjEy4GMDAWSVDoL2z5p\nSsGCPbr5aNka5it3rvDXtb+KfsEyYvHJxYWKNZTeHZ6HUqHksZaP8fdjfzM8fHiBfZsHNueXEb/w\n4wM/CrEWCASVDiHY5YAjdzgUL5d4cV3iwTWC7SKcK3pNtsFkYHXs6iL1dXUpyzredVg8eDErhq4g\n2CdYts/f3Z+Poz9mz9g9Ime4QCCotAiXeDngTLD1+qKfozCXeIZenunMz92PhyIfkrl9f4n/hdk9\nZuOmciv6hV3I1qStpGSnWLd9Nb683PFlLmVc4qL2IhczLpKak0q7Ou14od0LZTKGgY0Hcn/I/Xx2\n8DN2X97NfcH38VL7lwjwDCiT6wkEAoGrEIJdDrjCwi7IJW6WzHapSX01vvQJ7YOfu5/V+k7NSSXm\ncoxdru3y4sfT8uQlIyJG8GL7F8t9HDU0NZjRdUa5X1cgEAhKg3CJlwNlYWEHBclrYZsl27a3mzdu\nKjfc1e4MbTpUdtzik4srZE12SnYKW5O2ytryJzcRCAQCgXOqnYW9c+dOtmzZglarpX79+owaNYqI\niIhCj7t58yazZs0CYP78+bJ9RqORjRs3cuDAAbRaLb6+vvTr14/evXsXaUyOKnVB6eawC8oj7ufu\nZ/3/w5EPs/T0Uuv2xsSNzNw7k7F1ylcsV8WukiUsiagZ4fJ5aoFAIKjOVCvBPnjwIKtWrWLMmDGE\nh4ezc+dO5s2bxzvvvENgYKDT44xGIwsWLCAiIoK4uDi7/QsWLCAtLY3HHnuM2rVrk5GRgcFgcHAm\nxzh3iRf5FA7yiBdNsO8PuZ+ImhHEpdle1+eHP0cfoefDiA+LPoBSIEkSy08vl7WNazEOhaJ4xU8E\nAoHgn0y1colv27aNLl260L17d+rVq8eYMWPw8/MjJiamwOPWrFlDSEgI7dq1s9t3+vRpYmNjmTx5\nMlFRUQQFBdG4cWMiIyOLPK7SWtg5OXDnjq2vWi3h51c0wVYpVSwZsoQAD3lQ1Tdx3/DVka+KdP3S\nciz5GGdunbGNSaFiVPNR5XJtgUAgqC5UGwvbaDRy8eJF+vXrJ2uPiooiMdF5taoTJ05w4sQJZsyY\nweHDh+32Hzt2jLCwMLZt28aBAwfQaDS0bNmS4cOH4+HhUaSxlXYO235Jl4Tyrket/ILtq/GVbTcL\nbMbaEWsZ+vNQWXDa67tfx9vNm8dbyVN4upr8wWZ9wvpQx7tOmV5TIBAIyptNmzaxbt06evbsyZgx\nYxz2OXfuHNu2bSMpKYmcnBxq1apFnz59uP/++ws9f7UR7MzMTMxmM76+crHy9fXl7NmzDo9JT09n\nyZIlPPfcc07FNyUlhfj4eNRqNc8++yzZ2dmsWLGC9PR0nn322SKNzbmFXaTD7SLEC8tydreFnUeb\n2m346cGfGL52ONnGbGv7//3xf3i5eTGy2Ui7Y1yBzqjjp3M/ydpEsJlAIKhuJCYmsnv3bkJCQgrs\nl5CQQHBwMAMGDMDPz4/Tp0+zdOlS3Nzc6NSpU4HHVhvBLgmLFi0iOjqaxo2dZ9WSJAmFQsGTTz6J\nl5cXAGPGjOGzzz4jIyPD7gEhj/j4eOv/r19vDtivfc7KMsn6OeP4cT/AVjXKyytTdlzClQT5mHWS\nw/MGEMAn7T7hpYMvkWvOtfRF4pktz3An9Q7d6nQrdCzFZeu1rbIHCn+NP01NTYv0uvMoTt+KoiqM\nEcQ4XU1VGGdVGCNU/nGGhzuv3Jednc2iRYuYMGEC69evL/A8gwcPlm1HR0cTGxvLkSNH/jmC7ePj\ng1KpJCNDvh45IyMDPz97ixMgNjaWuLg46xssSRKSJPH0008zduxYunfvjp+fH/7+/laxBqhXrx4A\nt27dcirYd3+4WVmeDvsYjeoCvwR5HDggF/uwME/ZcZpbGtn+0NqhTs8bHh5OQJ0Axq0fh0kyAZa8\n2qLxjQEAACAASURBVDOOz2DrqK20CGpR6HiKw7ST02Tbj0Y9SlRkVJGPj4+PL9J7VJFUhTGCGKer\nqQrjrApjhKozTmcsXbqUe++9l2bNmhUq2I7Q6XTUrFmz0H7VRrDVajWhoaGcOXOG9u1ty4XOnDnj\nMJgMYObMmbLtY8eOsWnTJl5//XX8/f0BaNq0KYcPH0an01nd5jdv3gQoMPL8bkobdJacXLw84o5c\n4nczsPFA3m3zLm8efRMJy7myDFmM/m00Ox7dQZBXUJHGVRhX7lxh56WdsjbhDhcIBNWJ3bt3k5yc\nzKRJk0p0/PHjx4mNjWXatGmF9q02gg3Qt29fFi1aRKNGjWjatCkxMTFotVp69OgBwNq1a7lw4QIv\nv/wyAMHB8pzSSUlJKBQKWXvHjh3ZsGEDP/zwAw888AA5OTmsXLmSdu3aObWuQe7e2bXL+ZiL4gUa\nNszy5+y4KylXZPt0Wl2h7qV+9fuRnpvOJ6c/sbZdyrjEyJ9H8mWnL3FTlj596ffx31sfCACa+TbD\nI92D+PTiub4qu6sMqsYYQYzT1VSFcVaFMULlH6cjD8CNGzdYt24d06ZNQ60uvpwmJCSwcOFCHn30\nURo1alRo/2ol2B06dCAzM5ONGzdaE6dMnjzZagmnp6eTkpJSyFnkeHh4MGXKFFasWMEHH3yAl5cX\nbdq04aGHHirwuLwP98YNBc2aORf25GQtGo3T3QBMnOjJ2rW2Tt98k82jj9rWgUvn5BZ3RIOIQt1L\n8fHxvNH3DW4pb/H9ye+t7UdvH2XB5QXM7T23VOukzZKZLfu2yF/HvROL7faqCq6yqjBGEON0NVVh\nnFVhjFB1xpmfxMREMjMzefvtt61tZrOZ+Ph4YmJimD9/Pm5ujo2f+Ph45s2bx7Bhw4iOji7S9aqV\nYAP07NmTnj17Otw3ceLEAo/t2rUrXbt2tWuvW7cuL730UonG42xJVx46HYUKtqtd4nfzUfRHxKXF\nsffKXmvbD6d+ICooin+1+VeRz3M3kiTxeszrnE8/b23TqDRlFokuEAgEFUHbtm0JCwuTtS1evJg6\ndeowaNAgp1Z3XFwc8+bNY+jQofTpU/TaDtUqcUplpDDB1usLt2JTU53nEYfSCbabyo0lg5fY1X+e\nHjOdmEsFJ5xxxheHv+CbY9/I2oY2HUpNj8KDKgQCgaCq4OXlRXBwsOzP3d0db29vgoODUSgUrF27\nljlz5liPOXfuHJ9//jk9evSgU6dOaLVatFotd+7cKfR61c7CrmwUJtg5OYWfo6A84lA6wQYI8Axg\nxdAV9FvVjzu5li+NSTLx+MbH2TF6B439nS97y8/Ksyt5a+9bsrY6XnV4u+vbTo4QCASC6kv+qdh9\n+/aRm5vL1q1b2brVVhApMDCQDz8sOF20EOwyJj29KBa28+pZBgPcvm1zhCgUEkFBrhVsgOaBzflu\nwHeM/m20NVAsXZ/OW3veYtkDy4p0ju1J2/n3tn/L2nw1vvw8/Gca+DYo9pgEAoGgqjF16lTZdv6p\n2IkTJxY6PesM4RIvY4oyh10Qt27Jjw8IkLh7WkSSJPvUpO7Og9wKYkDjAXaW8I6LO2RVtpxx5MYR\nHt/4uKyvRqVh2QPLaFWrVYnGIxAIBAIbQrDLmLutY0cUNoftKI/43WQa5LWwPdWeaFSFRLEVwIvt\nX6SWVy3rdrYxm9Oppws8JjEtkZG/jiTLkGVtU6Dg2/7f0r1B9xKPRSAQCAQ2hGCXMaW1sF2RR7w4\nKBQKOtTtIGs7eP2g0/43s24yYt0IbuXckrV/GP0hwyOGl2osAoFAILAhBLuMKW2UeEpK/oAz10WI\nO6NjvY6y7b+v/+2wX4Y+g4d/eZiLGRdl7VM6TOHpNk+XehwCgUAgsCEEu4zJn5a0Rg25hVxYlHh+\nwS6LgLP8dKhXuIWtN+oZv2E8J1NOytrHRI1hRpcZpR6DQCAQCOQIwS5j8gt2vXpyC7nwOeyCk6Zk\n6OXFTlwh2G3rtEWttEW2XdBeICXbtizBLJl5duuzxFyWr9PuF9aPz3t/XqoMaQKBQCBwjBDsMia/\nS7xePbngFj6HnT/orOxd4l5uXrQMailry7Oy87KYrY1bK9vfrk47Fg9ejJuq9DnIBQKBQGCPEOwy\nRJIcCXbxLGx7wS57lzhAx/qO57HnHZ5nl8Wsac2mrH5wNd5u3i65tkAgEAjsEYJdhmRmgtFoE1xP\nTwl//+JZ2GWZR7wgOta1F+wVZ1bw9l75Ou06XnVY8+AaAj2LVmpUIBAIBCVDZDorQ/Jb1wEBEh4e\ncsEtvoVd9i5xsA88O3TjkF20eF4Ws1C/UJdcUyAQCATOERZ2GZI/4KxmTQl3d3mfgqLEzWb7wh/l\n5RJv6NuQOl51rNu5plyRxUwgEAgqECHYZUj+LGcWC1vepyALOz1dIXOp16gh4ekp71NWgq1QKOys\nbOs+kcVMIBAIyh0h2GVIfpe4xcIu+hy2fVpSs10fuzzimpLlEXdE/gQqeYgsZgKBQFD+CMEuQ/K7\nxAMCzA4sbOfHFxYhDmVnYYN9pDiILGYCgUBQUQjBLkOKEnSm0zl3iReWRxzKVrA71O1AVFCUdXts\n1FiRxUwgEAgqCBElXoY4connt7CL4xLPn0ccylawVUoVmx7exE/nfqKud12GNBkispgJBAJBBSEE\nuwyxd4k7msN2LoD5I8Tz5xE/cuOIy2phO8Pfw5+n7nnKpecUCAQCQfERLvEyxNGyruLMYTtLmmI0\nG/nkr0/ou6ovJslk3e/t5o2HOt8FBAKBQFAtEBZ2GeJoDttgkPcpyMJ2FCV+If0CT2952mHJy8FN\nBpd8sAKBQCCo1AgLuwxxHHQm71OQhS13iUscZQndfuzmUKyfaPUEn/f5vBSjFQgEAkFlRljYZYij\nxCn5BbpgC/t/x3veggf+xWcX1tr1CfIM4ou+XzCw8cBSj1cgEAgElRch2GWE0QharVyM/fwku3lt\nZ1HiZvP/1mE32QoPTvj/9u48vqk63//4K1ub7qXpArR0b6EFStmhZVcQEFAZnQG9944KI85cxYvL\n6G90HGdxHuqIo150RhTF5TrisIxsUoqUskPZl7a0FCi0bG3pQleSJr8/OjkSulAgaZv283w8fEiS\nk+Td70nyOd9zvud7wOtCo2XuibiH/737fwn0CLRXbCGEEB2UFGwHaapYa7U0GiXe3NSkmZlqavp/\nAFOfbvSYm9aN18e8zmP9H5PTrIQQoouQgu0gjY9fN5xD3drzsHfsVMGEVxrdPzBoIIvvWUyMX4xd\ncgohhHAOMujMQZoacAat72GnHswD/Y/nWKtQ8/yw59n4041SrIUQoguSgu0gzRXs1vSwLRbIKDhs\nc99g3wm8kvQKOo3OrjmFEEI4BynYDtLUtKQAOh2o1T/2sk0mFSaTzaKcOaOm3M22YCdHJjgmqBBC\nCKfQ6Y5hp6WlkZKSQnl5OT179uRnP/sZsbGxN33epUuX+OMf/wjAokWLmlwmNzeXt99+m+7du/P7\n3/++xddrapYzAJWqoZddXf3jY7W14On54+2dOzXQ44DN8wf1GHDTv0EIIUTn1al62BkZGSxbtoyp\nU6fy6quvEhUVxfvvv09JSUmLzzOZTCxevLjFwl5VVcWnn35Knz59WpWlqXnErW52HHvHTnWjgj0g\nUAq2EEJ0ZZ2qYKemppKUlMSYMWPo0aMHDz/8MD4+PqSnp7f4vBUrVhASEsLgwYObXebzzz9n5MiR\nREVFtSpLc8ew4ebHsbcdPQv6CuW2h8aHMO+wVr2vEEKIzqnTFGyTyUR+fj7x8fE298fHx5OXl9fs\n844cOcKRI0eYPXt2s8ukpaVRUVHBtGnTWp3nxlnOrLvEoeUe9sWLKs6ZbI9fDwhMkPOthRCii+s0\nx7ArKysxm814e9teXtLb25usrKwmn1NWVsYXX3zBr371K/Q3dnv/raCggDVr1vD//t//Q61u/fZN\nYWEN8OOI7pqaAnJzG3rNKlVfwE157MSJfOrrG7rZqandGu0OD9f3Ijc3t9Xv3VqOeE1HcIaczpAR\nJKe9OUNOZ8gIHT9nTEz7n07baQr27ViyZAnjxo0jMjKyyceNRiOLFy/moYceIiAg4JZeu7bWw+Z2\n//49iIkJAsDHx/bUrKCgcGJiGi6TuXixvlHBHtd7nN0/LLm5uR3iA3gzzpDTGTKC5LQ3Z8jpDBnB\neXK2t05TsD09PVGr1VRUVNjcX1FRgY+PT5PPyc7OJicnhzVr1gBgsViwWCzMmzePRx55hPj4eC5c\nuMDSpUtZunRpo2Xmz59P3759m3zt5kaJQ8vHsHfu0sAUGXAmhBDCVqcp2FqtlrCwMDIzMxkyZIhy\nf2ZmZrODyV577TWb24cOHWL9+vX85je/wdfXF1dX10bLbNmyhczMTH71q19hMBiazdPSoDNXV9tl\nrcewy8rg+Lnz4FGsPOamdSfaN7rZ9xFCCNE1dJqCDTBx4kSWLFlCREQE0dHRpKenU15eztixYwFY\nuXIlp0+f5rnnngMgODjY5vlnzpxBpVLZ3H/jMl5eXmi12kb336im5seCrdValPOsjxYdpcbfDIwG\nGpax9rD37NFC94M2r5MQ0B+NWtOqv18IIUTn1akK9tChQ6msrGTdunXKxCnz589XesJlZWUUFRW1\neS4/PwsqFSw6sIhXtr4C/YG6J2DtRwDKNbJ37Wo8YUpCoMxwJoQQzmD9+vWsWrWK8ePH8/DDDze7\nXEFBAf/4xz84ffo0Hh4ejBkzhmnTpt30bKBOVbABxo8fz/jx45t87PHHH2/xucnJySQnJ7e4zIwZ\nM5gxY8YtZfLzazju/W7Guz/eOWgJpL4FdT7U1jaspF27tBApx6+FEMLZ5OXlsXXrVkJCQlpcrqam\nhr/+9a/ExMTw8ssvc/HiRT777DNcXV2ZNGlSi8/tNOdhd2Tdulm4UHWB4pofj02jrgfvQqBhl3hN\nDRw40LiHLQVbCCE6turqapYsWcKjjz6Ku7t7i8vu2bOHa9eu8fjjjxMcHMzgwYOZPHkyqampWCyW\nFp8rBbsNdOtm4XjR8cYPeF4EoLZWxb59Gowul8H7vPKwi8aFPn6tmwpVCCFE+/jyyy8ZNGhQq6au\nzsvLIyYmBhcXF+W+vn37UlZWRnFxcQvPlILdJvz8LGSWZDZ+4N8Fu67u37vDe9gOOOvr31cupymE\nEB3Y1q1buXz5Mvfff3+rlq+oqGhygi/rYy3pdMewO4qMjH02t397cFejZf7nlQweifzxgiNl/dfw\n4YkfHw93DXfo7D8dfWYhK2fI6QwZQXLamzPkdIaM0PFzNjWxy8WLF1m1ahUvvvgiWq3jy6kUbAcZ\nOvTHc8Ffe62Gs/5nGy3z7ic63k0dwvz5dSxZ4kLVvW/AdVOhj4ke47DZf5xlZiFnyOkMGUFy2psz\n5HSGjOA8OW+Ul5dHZWUlv/vd75T7zGYzubm5pKens2jRInQ6272k3t7eTU7wZX2sJVKw24B3tzpy\nrzSx9fjvXeIZGRqqqlQy4EwIIZzIwIEDCQ8Pt7nvs88+IygoiKlTpzbZ646KimLFihUYjUalmGdm\nZuLr64u/v3+L7yfHsNtAjccJjGZj4wc8LgGwd68G9KXQ7bTykEalId4/vvFzhBBCdAju7u4EBwfb\n/Ofq6oqHhwfBwcGoVCpWrlzJwoULlecMGzYMFxcXPvvsMwoLCzlw4AAbNmxg4sSJXe887I6oVNfE\nCHFQetj19SoItR1w1sfQB7226SuICSGEcA43Ttjl7u7OggUL+Prrr/nTn/6Eh4cHEydOZOLEiTd9\nLSnYbeCi5VjTD/y7YAOyO1wIITqBF154weZ2UxN2hYSE8Otf//qWX1t2ibeBc3XN9LA9ikBtavi3\nFGwhhBAtkILdBnIrminYKgu4/3tXiRRsIYQQLZBd4g7m7neF81WFzS/geRGueYIhR7lLhYp+/v3a\nIJ0QQghnIQXbwTwij1Dd0gKeF8GlqqG3/W/R3aLxdPF0eDYhhBDOQwq2g+lCjrS8gOdFcLU9R1t2\nhwshhLiRFGwHswQetbmtU+tsz8n2vAT+2TbLSMEWQghxIxl05mC1PrYFe0TPEbYLeF6E7rbnYCcE\nJjg6lhBCCCcjBduRVGauutmegz0+dLztMr5nINB2FPmAAOlhCyGEsCUF25F8z2BSV/1409WXxKBE\n22XC00Bdr9wM8w7DV+/bVgmFEEI4CSnYjhRkO+As3j+eII8g22X0tldtkePXQgghmiIF25FuGHDW\n178vge6BLT5FCrYQQoimSMF2pBt62H39++Kn90Oj0jT7FCnYQgghmiIF25GCGvewNWoNAe4BzT4l\nIUBGiAshhGhMCraj6KrBz3ZClDhDHECzu8V7evYk0KPlXeZCCCG6JinYjhKQCWqzcjPcJ1yZbrTR\nwLN/k/OvhRBCNEcKtqM0MeBMeaiZHracfy2EEKI5UrAdpYlTupSHmulhy4AzIYQQzZGC7Sg3DDi7\n/nKZzQ06k4IthBCiOXLxD0cJOmxzM97Q0MOuq6vDC69Gixv0BjzqPSgvL2+TeHq9vs3e6060Jqde\nr8fV1bWNEgkhRPuQgu0oHsXKP/UaPZG+kVRVNUxTGu4f3mjxxKBEfH3bbkpSV1dX9Hp9m73f7bpZ\nTovFQnV1NSaTCQ8PjzZMJoQQbavTFey0tDRSUlIoLy+nZ8+e/OxnPyM2Nvamz7t06RJ//OMfAVi0\naJFy/4EDB0hPT+fs2bMYjUZ69uzJ1KlTSUxMbO6lGonzj0Oj1mAymfDx8SGorvExbDn/+vaoVCo8\nPNpuz4QQQrSXTnUMOyMjg2XLljF16lReffVVoqKieP/99ykpKWnxeSaTicWLFzdZ2HNycujTpw/z\n58/n1VdfpV+/fnz44Yfk5OS0Opd1d7hVU+day/FrIYQQLelUBTs1NZWkpCTGjBlDjx49ePjhh/Hx\n8SE9Pb3F561YsYKQkBAGDx7c6LFZs2YxZcoUIiIiCAwMZMaMGYSFhXHo0KFW57r+lC4Abxdv9Brb\n3bxSsIUQQrSk0xRsk8lEfn4+8fG2vdn4+Hjy8vKafd6RI0c4cuQIs2fPbvV71dbW4u7u3urlbyzY\nKpWKiRETlduJgYmE+4S3+vWEEEJ0PZ3mGHZlZSVmsxlvb2+b+729vcnKymryOWVlZXzxxRf86le/\navUArLS0NEpLSxk5cmSrs7lVuJGbm2szmnnh6IVEekVSW1/LvIR51NXVtfr17KW2trZVy82fP59v\nv/220f2bNm2iX7+G09WKior43//9X1JTUzl//jyenp5ERERw//33M3v27GYHhB09epQFCxZw6tQp\nkpOTef/99+nWrRsAZrOZqVOn8tJLLzFu3LgWM1ZUVHD58uVW/T2OkJube/OFOgDJaV/OkNMZMkLH\nzxkTE9PeETpPwb4dS5YsYdy4cURGRrZq+f3797N8+XKeeOIJDAZDq54T6B7IsH7DACgvL1c2DPR6\nPb8f+/vbC24HtbW1rd5I0Wg0jBs3jo8++sjmfoPBgFarJT8/n8mTJ+Pl5cUrr7xC37590ev1ZGdn\n88UXXxAUFMRDDz3U5Gs///zzjB07lqVLl/L000/zwQcf8Kc//QmADz/8kOjoaCZPnnzTjN7e3vTq\n1atVf4+95ebmdogv881ITvtyhpzOkBGcJ2d76zQF29PTE7VaTUVFhc39FRUV+Pj4NPmc7OxscnJy\nWLNmDdBwipDFYmHevHk88sgjjBkzRll2//79fPrppzz++OMMGND648037g53Vq6urgQFNT1D23PP\nPYdarSYtLc2mJx0eHs7kyZOxWCzNvm5OTg4ff/wx0dHRPPjgg6SkpABw9uxZ/va3v7Fhwwb7/iFC\nCOGkOk3B1mq1hIWFkZmZyZAhQ5T7MzMzmxxMBvDaa6/Z3D506BDr16/nN7/5jc050RkZGXz22Wc8\n9thjzb5Wc1pTsH19m96gcJSyMvudAnXlyhV++OEHXn311WZ3e6tUqmaf369fP9LS0oiMjCQ9PZ2+\nfRva67nnnuPll19u9Z4MIYTo7DrNoDOAiRMnsnPnTrZt28aFCxf45ptvKC8vZ+zYsQCsXLmShQsX\nKssHBwfb/Ofr64tKpSI4OFgpPnv37mXJkiXMnDmT2NhYysvLKS8vVyZBuZnr5xB3Zps2bbJpqwcf\nfBCAU6dOYbFYiI6Otlk+Pj5eWXbBggXNvu7777/Pd999R2JiIi4uLixYsIDly5djMpkYO3Ys//Ef\n/0FiYiIvvPACRqPRoX+jEEJ0ZJ2mhw0wdOhQKisrWbdunTJxyvz585VeWllZGUVFRbf0munp6dTX\n17Ns2TKWLVum3B8bG8sLL7xw0+d3ll3iSUlJvPfee8rtmx3/Xr9+PWazmWeeeabFwW1xcXGsX79e\nuV1aWsof/vAHVq9ezYsvvkj//v35+uuveeCBB1i6dCm/+MUv7vyPEUIIJ9SpCjbA+PHjGT9+fJOP\nPf744y0+Nzk5meTkZJv7WlOUm6NRaejt1/u2n9+RuLu7Nzk4LzIyEpVK1WiEZ3h4uPK8W/HKK68w\nd+5cwsPD2bp1K88++ywuLi7cf//9bN26VQq2EKLL6nQFuyOJ7haNXnvzkdj2PKbc1vz8/JgwYQIf\nf/wxTzzxBJ6enrf9Wunp6Rw7dkzpyZvNZkwmEwDXrl2jvr7eLpmFEMIZdapj2B1NZ9kdfjMLFy7E\nbDYzbtw4li9fTnZ2NidPnmT58uUcO3YMjUZz09eora3lhRde4L333kOrbdiOHDlyJJ988gknTpzg\n66+/vqVz34UQorORHrYDdZYBZzdj3X39zjvv8Prrr1NYWIhOpyM2NpY5c+a0ajf2m2++ycSJE20u\nqvLmm28yd+5c7r77bu655x7mzp3ryD9DCCE6NCnYDtRZeth/+9vfbrpMUFAQb775Jm+++eZtvcfv\nfve7RveFh4ezdu1ap7gMqBBCOJrsEnegG6/SJYQQQtwuKdgO4ooXod6h7R1DCCFEJyG7xB2kp7Zv\nizN8CSGEcH5paWmkp6dTUlICQM+ePbn33ntJSEho9jnHjh1jzZo1ynifqKgoHnzwQbp3797ie0kP\n20Ei3TvH8WshhBDN69atGz/5yU/47W9/y8svv0yfPn348MMPKSgoaHL5oqIiPvjgA2JiYnj11VdZ\nsGABRqOR999//6bvJQXbQfp069feEYQQQjhYYmIi/fv3JzAwkO7du/PAAw/g6upKXl5ek8ufPXuW\n+vp6Zs6cSWBgIKGhoUyZMoWioiKuXr3a4ntJwXaQ/t1lwJkQQnQlZrOZvXv3UldXR1RUVJPLhIeH\no9Fo2LZtG2azmdraWnbu3El4eDheXl4tvr6qrKys+Wsfitt2LPsYrhrX9o4hhBDCDlq6XndBQQFv\nvPEGRqMRV1dX5s6d2+Ix7JycHD766CMqKyuxWCz06tWLZ555Bm9v7xYzSMFuQyaTiatXrypXBWtP\ntbW1TnF+881yWiwWysrK8PLyUmZIa2u5ubktfpk7CslpX86Q0xkygvPkbI7JZOLKlSvU1NSwf/9+\ntm3bxvPPP09wcHCjZcvLy3nrrbdITExk+PDh1NbW8t133wENlxVWq5vf8S2jxNuQVqvFy8uLioqK\n9o5CRUXFTbfmOoLW5GzPYi2EEFqtlsDAQADCwsI4c+YMqampPProo42WTUtLw9XVlYceeki5b86c\nObz44ovk5eW1uOEiv3JtTKvV4uPj094xuHz5Mr169WrvGDflLDmFEMLq+gsX3ejatWuNetHW2xZL\nyzu8ZdCZEEIIcZtWrFhBTk4OxcXFFBQUsHLlSnJychg+fDgAK1euZOHChcry/fv35+zZs6xZs4ZL\nly6Rn5/P0qVL8fPzIywsrMX3kh62EEIIcZvKy8tZsmQJFRUVuLm5ERISwvz58+nXr+HU3rKyMoqK\nipTl4+LimDt3LikpKaSkpODi4kJkZCTPPPMMrq4tD1SWgi2EEELcpscff/yWHx82bBjDhg275feS\nXeJCCCGEE5DTuoQQQggnID1sIYQQwglIwRZCCCGcgBRsIYQQwglIwRZCCCGcgBRsIYQQwglIwRbt\n4uzZs81e4F3cuoqKCurr69s7RotOnz7NihUrKC8vb+8onYIzrHOA6urq9o7QKs7QnjJxSiuUlZWx\nfv16fHx86NatG0lJSe0dqZHy8nLS09Nxd3fHz8+PQYMGtXekJlVUVPD5559z8uRJpk+fjp+fH+7u\n7u0dq5GysjLWrVuHh4cHAQEBJCcnt3ekRiwWC/X19Xz99decOnWK2bNn07t37/aO1UhZWRlLly4l\nMzMTNzc3pkyZ0t6RmlRRUUFubi79+vW76YxT7cVZ1jk0rPd//vOfVFVV4eXlxahRozpcVmdqTwDN\nSy+99Fp7h+jItm/fzgcffICbmxv19fVs2LCB8vJyAgMD8fT0bO94AKxdu5bFixej1WrJz88nNTUV\nLy8vwsPD2zuajdLSUj788EP0ej1PPvkkvXv3xs3Nrb1jNXLgwAH++te/otfrqampYcOGDZSVlREU\nFNRh1jmASqVSfhRNJhPu7u6Ehoai0+mwWCztfglXgH/+85989NFHhIaG8sADD3Do0CESExPx8fHp\nMBkBNm/ezLvvvsu+ffvo168fBoOhvSM1yRnWOcDu3btZtGgRBoOBxMREDh48yPnz54mMjMTDw6O9\n4ymcpT2tpGC3oK6ujhUrVjB+/HhmzZpFYmIi4eHhrF69mrq6Ovr379+uK7S+vp6UlBSOHj3K7Nmz\nmT59OiNGjECr1bJx40YmTZrUbtmasm/fPoqKinj66afx8vLiwoUL1NXV4eLigkajae94ipUrV9K7\nd2/mzp3L0KFDCQ0NZffu3ZSUlJCQkNChvsRXr17l6tWrREVFkZGRQc+ePQkKCmr3jLW1tcyfP5/q\n6mp++ctfMmnSJOrq6jh48CChoaEEBwe3e0Zo6GEdO3aMHTt2cNddd1FdXc2ZM2cYMGAAOp2uoW+O\nggAAIABJREFUveM1qaOucyuz2czy5csZOnQoDz/8MKGhoXTr1o309HQmTJjQ4vXt20NHb8/ryTHs\nFuTk5FBYWEhsbCxmsxmz2UxcXBx6vZ4DBw6wa9euds2n0Wior6+nd+/e9O3bF2i4fGdMTAwqlYoL\nFy60az4r6yXjzp07h4+PDzU1NfzlL3/h448/5i9/+QsfffQRR48ebeeUDcrKyrh8+TK+vr7KfQMG\nDGDo0KGcOXOGnTt3tmO6xkpLSyksLGTmzJm4ubmRkZFBVVVVu2Yym83o9Xqef/55XnvtNaKjowEI\nCQmhpqaG2tpaZbn2plKp8Pb2ZsSIEYwePZpHHnmE48ePc+TIkfaO1qyOuM6vV1BQQFFRkc1lhOvq\n6khISMBoNN70EpJtraO35/Wkh/1vdXV1FBUVoVarcXFxARqKX0pKCgMHDiQwMBCVSkV+fj5nzpzB\nz8+PkpIS+vXrh1bbNkMBjEYjRqMRrVaL2WxGpVIRERFB3759UalUyi6cM2fOkJOTw3333dcmuW50\nY1tas+3duxd3d3eOHz+Oh4cHs2bNIjIyksLCQjIyMhgwYECb7iK/vj2tbefi4kJKSgphYWHExMRQ\nX1+PWq3GYDBw+vRpLly4QL9+/dq099XUZ9PqxIkTGI1GEhMTcXd3Z/v27bi5ubF161bCw8PbrDdT\nU1PD2bNnUalUypiEbt26KY+bzWYsFgsnTpzg6tWrDB48uF16ME21pa+vL6GhoWg0Gnx8fCgqKmLv\n3r0MGjSo3XqD17fnjd+JjrLOoenfJA8PDzIyMjh79qxyGHH9+vVoNBrWr19PaWkp4eHhbTpOwFna\n82akYNNwDPiLL77gyJEjbNy4ET8/P+UYdWlpKd999x1VVVUcO3aML774ggkTJuDt7c2JEycYOnRo\nm6zQDRs28Pnnn+Pr60tISIjyY2fdlWw2m5WLoO/YsQOdTseQIUOUgtNWbmxLg8FAQEAAGo2G0tJS\n1q5dy9WrV/npT39KcHAw3bt3x9vbm9zcXOrq6oiNjW2TnE21Z319PRqNhrKyMvbu3cuYMWOUYu7u\n7k5FRQVZWVlER0fbFCNHaqo9AwMDlXVqvQ7v4MGDCQ4OJi0tjX379mEymUhKSlI2mBxp/fr1/P3v\nfycnJ4fvv/8enU6Hn58fer1e+RFXqVSo1Wr27duHSqViwIABbX4Y5GZtac0aFRXFunXrcHV1JTo6\nus03LFpqT+gY6xya/w5ptVp69uyJp6cnx48f58qVKzz11FPcfffd+Pv7c/jwYSorK+nTp4/DM4Lz\ntGdrdOlR4iUlJfzjH/+guLiYRx55BL1ez+7du/m///s/QkJC6N69O//1X/+Fu7s758+fp66uTrnO\naUlJCRs2bHD4br2qqir+9a9/cfLkSWpra8nIyCA6OrrRoBi1Wo3JZEKr1ZKbm0tiYiLwY0G3PuYo\nLbVlz5496dGjB2PGjGHr1q1cuXLFZiMiJibGYblu1FJ7WjONGjWKbdu28cMPPzB58mSl952UlMSy\nZcvaZJdeS+1p3dCxLhcXF0dWVhaffvopKpUKV1dXhg0bhoeHh8N/aI4ePcquXbt47LHHCAkJYc+e\nPaSnp1NYWMjPf/5zm2KoVqsJCwtj586dbbqHorVtqVarsVgseHt7M3XqVFJSUkhMTCQ4OJhr164p\nu/od6WbtCVBcXNyu67w136GoqCiioqI4fPgwycnJygDYpKQk9u7dS3l5ucN/k8A52vNWdOmCferU\nKaqrq5k3bx49evQAGopHRkYG586dU77IDz74IHV1dTa7cHbv3k1AQACurq42vVt7q66uxtXVlfvv\nvx9PT0/eeecdjh49yqhRoxp92LVaLaWlpRQVFTFkyBAAjh07xpYtW5g8ebJyLNERWmrLgoICevTo\ngU6nY9q0aXz88cccPXpUGXhkMpmor6/H29vbYfmsWtOeQUFB3HPPPaxdu5bY2FgiIyMBuHjxIt26\ndWuTL3BrP5sAX375JS4uLtxzzz1Mnz6db775ht27dxMeHk5cXJxDcx4/fhytVsvAgQMBmDZtGnq9\nni1btrB161bGjBlj8/0ICAjAbDZTUFBASEiIQ7NZtaYtrRtl1nU7depUduzYQWpqKlFRUezatYsJ\nEyYo3ytHaak909PTGTt2LBaLpV3XeWt/k0pKSrh8+TJhYWHKfXV1ddTU1BATE9MmhxKdoT1vRZcs\n2NYvZ3x8PGq1WvkSQ8PWo6+vb6MegKurKxaLBbPZzOXLl8nMzGTIkCEOP0XBYDAwfvx4pUc9ZMgQ\ntmzZQnR0dJM/eDk5OQQHB6PRaHjvvffIysri7rvvdlixvtW2HDp0KEeOHGHXrl3k5+czcuRI0tPT\nsVgsxMfHOyTj9VrTnmq1mqlTp5Kdnc2XX35JfHw8AwcO5LvvviMoKIiePXs6LN+ttmdYWBj33Xcf\nQ4cOJTAwEIB7772XzMxMhx8KMZvN1NfXExQUhNFoVHINGTKE8+fPk5aWxvDhw202an18fKiqqmqT\nwzS30pbXb4RZnzdq1ChWrVrFnj17mDhxosOL9c3ac8uWLSQlJdG7d2+8vLwYNmxYm69zaP1vksFg\nwMPDgxUrVjB69GiCg4P57rvvqK2tJSEhweE5naU9b0WXPIZtHQTl4uKi/Phaj1+VlZWRmprKPffc\ng5eXl/Ics9nM0aNH2bRpE1999RURERHMnDnT4VuJ1w/iAYiNjWXdunW4uLgQERGhvL/1R2bjxo0c\nPnyYtLQ0AgMDefHFF5Xd447K19q2tN4fHx+Pl5cXubm5ZGdn4+3tzbx582xGZjsy783a01pcEhIS\nqKqq4vjx4+zbtw+DwcDcuXMdOjDuVj+b3bt3p0+fPsqGo3W37ejRo5UfH0ewWCyo1WoKCws5cOAA\ngwYNUjJYj13n5uai0+mUHpa1B5uamsrAgQMJCAhwWD7r+93q9xzg2rVrLFu2jA0bNpCUlMSzzz7r\n8ALTmvY8ceIEbm5uDBs2jJiYGGVOgLZa51at+Q5Zx8707t2bjIwMsrOzycjIwGAw8Mtf/hJ/f3+H\nZnSm9rwVXbJgWzW1VX3w4EEuXbrEtGnTbE6cV6lU1NTUUFFRwcyZM7nrrrscXqxvPHG/vr5e2S2f\nnp5OVFSU8sG3Lnv48GHq6+uZP38+kyZNajSq2FFa05bWrVWtVktISAjDhw9nyJAhjBw5sk1ytrY9\nrYNn9Ho9cXFxDBs2jOHDhzN69Og2O/ba2s+mtU1v3KXr6J6B9f3Cw8NZv349Li4uyumE0DDyeufO\nnfj7+ytjFKwFdNy4cYSGhjo03/Vu5XsODaf5nD9/npkzZzJhwoQ2Weetac9du3bh5+dnc//1f19b\n7rWwau47pFarlcNcgwcPZuDAgSQlJTFmzJg2/a539Pa8VR0vkZ1cuXKF/fv3k5+fj8lkAn48H7i+\nvl5ZKdZBY9bbOTk5Nj8wZ8+eJTMzE4CIiAimT5+uDKC4U1evXqWiosImh1VLGadMmYKbmxvbt2+n\ntLSUzMxMdu/eDcCsWbN47bXX7PqDeLs5m2rLrKws5blardauhxTKysrIycnh0qVLjR671fbcu3ev\n8lw3Nze79v5vN2dL7Wnv4+o3W+fWHzPruISNGzdy+vRpZRk3NzfMZjNXrlyxyefh4WHXWcQc8dkM\nCAhg5syZdj2MdLN1fqvt6Sj2/A7t2bMHaFjngYGBdu1VX7lyhd27d3Py5EnlnOnrf987SnvaW6fs\nYa9cuZJPPvmEoqIi5by/4OBgPDw8MJvNaDQaLBYLK1as4OrVq/Ts2ROVSkVdXR2rV69m/Pjx6PV6\nli5dyrJly4iPj7f7AJlVq1bx6aefYjKZiI+Pb/SDax2xen1GtVqt7NIzGAysXbuWQ4cO8cMPPxAX\nF2ezi7w9c7Z1WwJ88803fPXVV+Tn57N69Wo0Gg09evRQtuZvtz07Qs6O/NmsqKhg7NixHDhwgJMn\nT+Lh4UH37t3Jz8/n4MGD3H333Q7b9d0ZP5vt2Z7O8B2yWCwsW7aML774gvLyclJSUigpKSEyMlI5\nVNVR2tMROt2gs1OnTnHw4EGefPJJ4uLiyMjIYNu2bSxZsoSXXnoJtVrNzp07WbZsGQaDgREjRihb\nY5cuXaKqqopDhw7x97//nejoaN544w38/Pzslq+6uppvv/2WwsJCevbsydmzZ8nJyVFmU7Nm2blz\nJ99++y1+fn42GdVqNaWlpeTm5mI0GunVqxcLFiywa0Z75GyLtoQfT9m5evUqTz31FH5+fmzbto29\ne/cSGBjI4MGDW8zZVu15pzk76mdz2LBhAMyZM4dVq1bx97//nZiYGPLy8hgwYABRUVF2y3cnOZ3l\ns9ke7eks36GioiKWLl2K2Wzmf/7nfwgNDWXXrl1s2rSJwsJCZS9Ye7enI3W6gn3o0CHMZrMySCQp\nKQl/f3/ef/99ZX7t4uJiHnjgAcaMGWNznOLUqVNUVlZy7tw5/vu//9sho5Z1Oh0Gg4H+/fvj4+PD\n8uXLycjIIDIyUukd19XVceXKFe6///5GGU0mExs3bmT37t0899xzDruyzJ3mbIu2BCgsLESn0zF7\n9mzlUMV9993H7t27qampARrmtW7v9rzTnI5qz+uPSd7uOrdYLPTo0YPHHnuM06dPc+nSJWbMmGHX\nXcr2yGnlyM/m9Tlvd523dXt25O/Q9Tnr6+sZOHAg/fr1U05rHDhwIGlpacpto9FISUlJm7dnW1GV\nlZV1rIldb4F1ZV6/Vb1x40a2b9/Oyy+/rAyGMJvNrFmzhs2bN/P22283GkRifZ3a2lr2799v10sp\nNpWxurpaGWW5evVqjh07xsSJExk6dKjyvJbO7a6oqLD7Ocv2yunItrz+9a+flay4uFj58lnz/PnP\nf2b06NGMHj26yZzXc2R73mlOR7bntWvXUKlUyvfBYrFQU1NzR59NR7BXTkd/Nm/MeeXKFa5cuXJH\nn01HcEROR3yHbsxpNBq5du2aMu6loqKCTz75hLKyMiIiIhgwYECHvaywvTjtMewNGzZw+PBh5diV\n9ct44cIFzp49S7du3ZTzLlUqFX5+fuzZsweLxUJMTIxy3MX6uMViQafT2XWw1o0Zra6/dFtgYCDH\njx+nuLiYmJgY9Hq9zYjqpth7Dl575nRUW96Y07rl7Obmpux6s/6glJaWsnr1aqZMmYKvr2+7tued\n5nRUe65cuZJVq1Zx8OBBqqurlYltrp9X/XY+m/Zmz5yO/GzemNM65e6dfjbtzVE57f0damq9u7q6\nKsfTL126xG9/+1sCAgIYO3YshYWFyh4B66GRjjRDmb04XcE+ffo0S5YsYefOnZSXlxMSEoK/v78y\nMjAgIIBt27ZhMpkIv27idhcXFwoLC6muriYhIaHJL7OjMza1keDm5obRaCQrKwu1Wk1kZKTNBogj\nP3iOymnvvM3lvPEUE+u/MzMzOXv2LNOmTUOj0dgs0x7teac57ZnXZDKxePFicnNzmTp1KuXl5Rw6\ndIjs7GyGDx+unBpmNptxd3dvt8+mo3LaO29zOU+cOMHw4cNtllWpVO322XT2nNb1buXp6UlCQgKT\nJk2iV69eDB48mJKSErKyspRLDHdGTlewd+zYQU1NDVOmTKG8vJyzZ88ydOhQZS5t64xk1itDWY/J\naDQaNm7ciJeXlzJNXVtnvP5HxEqlUhEcHExOTg4XLlyge/funDhxgsOHDxMbG+vQrcTOmBNg165d\neHh4KINljh07Rk5ODqGhoV0+56VLl0hNTWXWrFkMHDiQQYMGERwczLp169BqtURFRdnkba913tly\nQsN3qL0+m50x5/WX71SpVGzZsgWdTmezQdfZOM152NZz7EaOHMnEiRMZMWIE/fv3p6ioiB07dgA/\nbj2PHz+eiIgItmzZwpYtW6iuriY/Px+j0ejQ6S9bk/H6C0dYt/61Wi1JSUlcvnyZhQsXsnTpUodO\n1tBZc0LD1n9WVhZxcXEUFxezcOFCPvjgA4depMVZckLDccHi4mJl9jGLxULv3r259957Wb9+vXL+\nrfV0nbZe5501p/U71B7rvDPmvFFeXh7V1dVK77ozFmtwoh62dQW4u7srx1u8vb0pKCjg5MmTJCQk\noNfrMZlMqNVqevXqhclkYtWqVRw/fpyUlBTi4+OZNGmSw44ZtSajdV7l67dmL1++zObNm8nJySE5\nOZlnn33WYaOVO3vOwsJCUlJSqKys5J///Cfh4eG8+OKLDj19w1lyQsNEIzk5OWi1WuWiJiqVioiI\nCLZt24bRaKRv377Kscy2XuedNSe03zrvjDnNZjPnz5/n4sWLfP/996xYsYKEhATuuuuuDjlDmb04\nTcG+kfUaxWazmZycHKqrq+ndu7eysjw8POjTpw+DBg0iNDSUKVOmMGrUqDZdmc1lvHHr7/vvv+fo\n0aP8+te/bvIqXJKz9TlPnjzJnj17MBgMPPnkk0yYMEFyXken05Gbm0tpaSnR0dG4ubkp1zA2mUxs\n376du+++W/metNc672w5VSpVu342O1tOtVpNZmYmW7ZsoaqqiieeeIKkpKROXayhgxXsy5cvc/r0\naQICAhoVi+unm4MfRzMaDAYuXbrEiRMniIqKwtvbm/z8fHx9fTGbzfj4+BAUFNRogv+OkhGgT58+\nTJo0ya6nRXS1nGfOnMHX1xdXV1cSEhKYMWOGzTGurpCzsLCQjRs34ufnp1zI4MaMOp0Oo9HIkSNH\n0Gg0REVFKdnPnz/PuXPnGDBgAHq9HpVK5ZB13tVy9u/fHw8PD9zd3enfv7/dP5tdNWdAQACxsbHc\nddddbXJp3o6gw2yOFBQU8Morr7BkyRKKi4uV+63HTTQaDSaTiZ07dyq3LRYLer2eQYMG4ebmxr/+\n9S8WLlzI66+/7pBL+DkiI9h/kvmumPPPf/4zlZWV+Pn50adPny6V02Qy8dlnn/H73/8eo9FoM2ez\n9di5RqPBaDSyd+9ekpOTCQsLIyMjw2Zu97KyMry9vTEYDDazWNlLV81pnfrSx8fHrp/Nrp7T1dXV\nqaYVtYcO08MuKSmhtLSUq1evUllZSUJCgs1Ivx9++IFFixYp8wa7uLjYHF9NT08nLy+PyMhInn32\nWbv1qJ0to+TsWjm3b9/OwoULUavVPP300yQnJze6gtf1GWtraxk2bBgBAQFcuHCBVatWUVpaypEj\nR9i2bRsTJ04kPDy8yVHtklNydtaczqLDFOzDhw9TWVnJfffdx7fffktcXJwygCctLY2NGzfy0EMP\ncd9999lcni0rK4u33noLT09P5s+fz4QJE+x+Er8zZZScXSvn119/jUaj4dlnn8Xf35/8/HzOnTun\n9PA1Gg2bN28mNTVVyahSqfD29mbQoEFotVqqqqooKyvjP//zP5WZouz9Yyg5JWdHzuksOszUpFu3\nbqWkpIQHHniAN954Azc3N5555hlMJhNarZZr1641eR3VyspKjh8/3ujk/66aUXJ2jZzWKU/z8vJY\nsmQJw4cP59y5c5w/fx6tVktlZSWxsbE8+eST1NfXK3MUWLVVD0VySs6OnNPZtGkP+9ChQ8ok7Tfa\nvn07AH379qVPnz5888035OXlsXnzZqKjo5u8HrHFYsHV1dWul8RzhoySs2vmvD6jdcpTPz8/CgoK\nSE9PJywsjJ/97GcMGTKEmJgY1q1bh9lsJi4urtEoX0f+GEpOydmRczqzNinYR48e5Z133mHbtm2E\nh4cTFBSkPGbdktq6dSujRo3CYDCwf/9+srKyKCoq4qGHHmp2AIQ9V6ozZJScXTNncxmt+ayzP02e\nPFmZG7p79+7odDo2bdpkc/qTI0lOydmRc3YGDm+l3NxcNm/ezMCBA0lMTGTFihWYTCblcesoQb1e\nz+7du3n99ddZtWoVU6ZMwdXVlZKSEkdHdIqMkrNr5mwpo3WWLy8vL6ZOndro+sPWUxubmx1KckrO\nrpKzs3BYD9u6dWUymTCbzSQlJdGnTx82btyIi4uLMmuOSqWirq6O9PR0srOz6devH3PmzGHAgAEA\nrFq1iuHDhyuXVOtqGSVn18x5KxmBJie2SE9Px8vLiwkTJtg9n+SUnM6Qs7Oxe8HOz8/HxcVFGYTj\n6elJREQEnp6eeHp6YjQaSUlJITk5WZmuUafTERQUxNixY0lOTsbNzQ2A8PBw3Nzc6N+/v113MTpD\nRsnZNXPeasYbFRcXU1lZyfLlyzl27BhTpkyhe/fudh/EIzklZ0fO2VnZrWDv37+fd999l4MHD5KW\nlkZ1dTU9e/a0WWkqlYoePXqQkZFBSUmJ0lNRqRquV33jbDUajYbo6Gi7rUhnyCg5u2bOO8lodfHi\nRTZt2sS3336LRqNh3rx5REdHK8+VnJKzs+fs7OxSsM+cOcM//vEP7rrrLiZPnky3bt2UyeOjoqJw\ncXFRtqBcXV1xd3dn9erVDBgwAF9fX0wmE0aj0eai9PbmDBklZ9fMeScZfXx8lN2Snp6eaDQahg8f\nzvTp0xtN/yg5JWdnztkV3FHBtq6kQ4cOkZWVxc9//nMMBgMRERHodDqOHTtGTU1No2vSBgUFkZeX\nR3Z2NgaDga+++gqtVktwcLDdfxCdIaPk7Jo57ZlRo9EQEhJCYGAgBoNBckrOLpOzK7mjUeLWlVRc\nXExgYKDNShs1ahShoaEcPXqUwsJC4Me5l11cXBgzZgxZWVm8/fbb6HQ6Bg4c6JAfbmfIKDm7Zk5n\nyCg5JWdHz9mV3FIP+/jx46SmpnL+/HnMZrOypXTt2jU2bdrEiBEj8PT0VAbraDQacnJy0Ol0yrl4\nJpOJ9PR0vvzyS6Kjo3n66ae5++677Xb5NmfIKDm7Zk5nyCg5JWdHz9mVtapgl5WV8cknn7B582YM\nBgPZ2dls3ryZsLAwAgIC8Pf3JyMjg9LSUhITE5VdKYGBgezYsQOtVktCQgLQMF3joUOHGDNmDLNm\nzbLbZdGcIaPk7Jo5nSGj5JScHT2naEXBrqur49tvv0WlUvGLX/yCUaNGMXbsWI4fP87FixcZOnQo\nKpVKGWjQu3dvm8unZWVlUVxcTFJSEtBwSbR+/frRq1cvu/0RzpBRcnbNnM6QUXJKzo6eUzS46TFs\nV1dXtFotI0eOJCAgQJnFJiEhgYsXL2I2m1Gr1QwZMoSBAwfy5ZdfkpWVhcVioby8nMuXLzv8Ig3O\nkFFyds2czpBRckrOjp5TNGjV1bqsVyWCH0cOLl26lPr6eubMmaPcZzQaee+99ygsLCQ0NJTz58/j\n5+fHvHnzGk1LZ2/OkFFyds2czpBRckrOjp5TQKtGAlw/YOD6kYNDhgxR7rcORHjiiScoKCjg9OnT\nJCUltdnWlzNklJxdM6czZJSckrOj5xStLNg3Ki4u5vz588pxCuvoQLVajbe3N/Hx8cTHx9s1aGfM\nCJLT3pwhpzNkBMlpb5JT3KlbOg/bevWikydP2kzwvnbtWhYvXszly5ftn/AWOUNGkJz25gw5nSEj\nSE57k5zCXm6ph23dXXL69GkGDx7M8ePH+fLLLzGZTDz66KMEBgY6JOStcIaMIDntzRlyOkNGkJz2\nJjmFvdzyLnGj0cixY8coKipi8+bNzJgxgylTpjgi221zhowgOe3NGXI6Q0aQnPYmOYU93HLB1ul0\nGAwG4uPj+elPf4pOp3NErjviDBlBctqbM+R0howgOe1Ncgp7aNVpXTeynpvXkTlDRpCc9uYMOZ0h\nI0hOe5Oc4k7dVsEWQgghRNuSzSghhBDCCUjBFkIIIZyAFGwhhBDCCUjBFkIIIZyAFGwhhBDCCUjB\nFkIIIZzAbV38Qwjh3Hbs2MHSpUuV21qtFg8PD4KDg0lISCA5ORm9Xn/Lr3v+/Hn27dtHUlIS/v7+\ndkwshJCCLUQXNn36dAIDA6mvr6e8vJwTJ06wbNkyUlNTeeqppwgJCbml17tw4QJr1qyhd+/eUrCF\nsDMp2EJ0YX379lWuygQwdepUsrKyWLRoEYsWLeIPf/gDLi4u7ZhQCGElBVsIYSMuLo57772XVatW\nsXv3bsaMGUNBQQGpqank5uZSWlqKXq8nLi6On/zkJxgMBsB2N/vbb7+tvN6jjz5KcnIy0HAlqNWr\nV5OXl4fJZCIsLIz77ruPPn36tPnfKYSzkUFnQohGRowYAUBmZqby/0uXLjFixAhmz57NqFGjOHbs\nGG+//TZ1dXUAxMbGctdddwENPfU5c+YwZ84cYmNjAThx4gRvvfUWVVVVTJs2jZ/85CcYjUbeffdd\nTpw40Q5/pRDORXrYQohG/Pz8cHNzo6ioCICxY8cyadIkm2UGDBjAm2++ycGDBxkxYgQBAQHExMTw\nww8/EB8fT+/evZVlLRYLX331FTExMSxYsEC59vLYsWP5wx/+wKpVq3jppZfa7g8UwglJD1sI0SRX\nV1dqa2uVf1vV1tZSWVlJUFAQ7u7u5Ofn3/S1zp07x8WLFxk2bBiVlZVcvXqVq1evUlNTQ3x8PKdO\nnVJ66kKIpkkPWwjRpLq6Ory9vQGoqqpi5cqV7N+/n6qqKpvlampqbvpaly5dAuDzzz9vdpmqqiqb\nDQMhhC0p2EKIRq5cuUJNTQ0BAQEAfPTRR+Tl5TFx4kRCQ0OVc7Q//vhjzGbzTV/PYmm4iu/MmTMJ\nCwtrchkvLy87pReic5KCLYRoZPfu3UDDaV9VVVVkZWUxffp0ZsyYoSxjNBob9babYy38er2e+Ph4\n+wcWoguQY9hCCBtZWVmsW7cOf39/RowYgVrd9M9Eamqq0nO2su7SvrGQh4WFERgYSGpqqnJc/HpX\nr161U3ohOi/pYQvRhR0/fpyioiLq6+upqKggOzubrKws/Pz8eOqpp9DpdOh0Onr37k1KSgomkwmD\nwcDJkyfJycnB09PT5vVCQ0NRq9V8//331NTUoNPpiIiIICAggJ///Oe89957vPrqqyQnJ9OtWzfK\nysrIyckB4Pnnn2+PJhDCaajKysosN19MCNGZ3Opc4mVlZXzzzTdkZ2dTX19PTEwMs2b8igPpAAAA\nlklEQVTN4p133iE2NpbHH3/c5rXXr19PcXExZrPZZuKUgoIC1q5dy4kTJ6itrcXb25vw8HBGjx5N\nv3792uzvF8IZScEWQgghnIAcwxZCCCGcgBRsIYQQwglIwRZCCCGcgBRsIYQQwglIwRZCCCGcgBRs\nIYQQwglIwRZCCCGcgBRsIYQQwglIwRZCCCGcgBRsIYQQwgn8f87Ld5ce1++ZAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "plt.style.use(\"fivethirtyeight\")\n", "\n", "fig, ax = plt.subplots()\n", "\n", "df_shots_cumulative.FG_Percentage.plot(ax = ax,\\\n", " color = \"b\",\\\n", " label = \"FG %\")\n", "ax.legend(loc = 0)\n", "ax1 = ax.twinx()\n", "df_def_cumulative.plot(ax=ax1, color = \"g\", label = \"Dist. Def.\")\n", "\n", "ax1.legend(loc= 0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" }, "toc": { "colors": { "hover_highlight": "#DAA520", "navigate_num": "#000000", "navigate_text": "#333333", "running_highlight": "#FF0000", "selected_highlight": "#FFD700", "sidebar_border": "#EEEEEE", "wrapper_background": "#FFFFFF" }, "moveMenuLeft": true, "nav_menu": { "height": "12px", "width": "252px" }, "navigate_menu": true, "number_sections": true, "sideBar": true, "skip_h1_title": false, "threshold": 4, "toc_cell": false, "toc_position": {}, "toc_section_display": "block", "toc_window_display": false, "widenNotebook": false } }, "nbformat": 4, "nbformat_minor": 2 }