
Technical Note: Capacitated Assortment Optimization under the
Multinomial Logit Model with Nested Consideration Sets

Jacob Feldman
Olin Business School, Washington University,

St. Louis, MO 63130, USA
jbfeldman@wustl.edu

Huseyin Topaloglu
School of Operations Research and Information

Engineering, Cornell Tech,
New York, NY 10011, USA
topaloglu@orie.cornell.edu

August 2, 2017

Abstract

We study capacitated assortment problems when customers choose under the multinomial logit
model with nested consideration sets. In this choice model, there are multiple customer types
and a customer of a particular type is interested in purchasing only a particular subset of
products. We use the term consideration set to refer to the subset of products that a customer
of a particular type is interested in purchasing. The consideration sets of customers of different
types are nested in the sense that the consideration set of one customer type is included in the
consideration set of another. The choice process for customers of different types is governed
by the same multinomial logit model except for the fact that customers of different types have
different consideration sets. Each product, if offered to the customers, occupies a certain amount
of space. The sale of each product generates a certain amount of revenue. Given that the
customers choose among the offered products according to the multinomial logit model with
nested consideration sets, the goal of the assortment problem is to find a set of products to offer
to maximize the expected revenue obtained from a customer, while making sure that the total
space consumption of the offered products does not exceed a certain limit. We show that this
assortment problem is NP-hard, even when there is no limit on the total space consumption
of the offered products. Motivated by this complexity result, we give a fully polynomial time
approximation scheme for the problem.

Keywords: assortment optimization, customer choice models, approximation algorithms,
multinomial logit model

1 Introduction

Incorporating customer choice behavior into revenue management models has been seeing

considerable attention. Traditional revenue management models represent the demand for a product

by using an exogenous random variable, but this way of representing the demand may be inadequate

when there are multiple products that can serve the needs of a customer and the customers choose

and substitute among the offered products. When the customers choose and substitute among

the offered products, the demand for a particular product depends on what other products are

offered, creating complex interactions between the demands for the different products. There are

numerous field studies that demonstrate the benefits from taking the customer choice process into

consideration when making operational decisions. For example, Chong et al. (2001), Kok and Fisher

(2007) and Misra (2008) focus on customers purchasing groceries in different food categories. These

papers indicate that there is significant potential for revenue improvement by explicitly taking the

choice process of the customers into consideration, when deciding which assortment of products

to make available. Similarly, Vulcano et al. (2010) focus on customers purchasing airline tickets

and demonstrate that there is significant potential for revenue improvement when one explicitly

accounts for the choice process of the customers among the different itineraries. When taking the

choice process of the customers into consideration, a critical tradeoff is that a sophisticated choice

model may capture the choice behavior of the customers faithfully, but solving operational problems

under a sophisticated choice model may be intractable.

In this paper, we study capacitated assortment problems when customers choose among the

offered products according to the multinomial logit model with nested consideration sets. In our

assortment problem, a firm has access to a set of products among which it picks an assortment of

products to offer to its customers. Each product, if offered, occupies a certain amount of space. The

sale of each product generates a certain amount of revenue. Customers choose among the offered

assortment of products according to a particular choice model. The goal of the firm is to pick an

assortment of products to offer to maximize the expected revenue obtained from a customer, while

making sure that the total space consumption of the offered products does not exceed a certain

limit. We capture the choice process of the customers by using the multinomial logit model with

nested consideration sets. In this choice model, there are multiple customer types. A customer of

a particular type is interested in purchasing only a particular subset of products. We use the term

consideration set to refer to the subset of products that a customer of a particular type is interested

in purchasing. The consideration sets of customers of different types are nested, so that we can

index the customer types such that the consideration set of a customer type with a smaller index

is included in the consideration set of a customer type with a larger index. The choice process for

customers of different types is governed by the same multinomial logit model except for the fact

that customers of different types have different consideration sets. A customer observes which of

the products in her consideration set are actually included in the offered assortment and she makes

a choice only among those products according to the multinomial logit model.

Main Contributions. We show that the problem of finding the assortment of products that

maximizes the expected revenue obtained from a customer is NP-hard. This complexity result holds

even when there is no limit on the total space consumption of the offered products. Motivated by

our complexity result, we give a fully polynomial time approximation scheme (FPTAS) for the

2

assortment problem. This FPTAS appears to be the first to address assortment problems with

consideration sets, while having a running time that is polynomial in the number of customer

types. Our FPTAS is based on a dynamic programming formulation of the assortment problem. In

particular, since the consideration sets of different customer types are nested, we index the customer

types such that the first customer type has the smallest consideration set and the last customer

type has the largest consideration set. In our dynamic program, the decision epochs correspond to

the customer types in the order of increasing consideration sets. In each decision epoch, we decide

whether we offer the product that is in the consideration set of the current customer type, but not in

the consideration sets of the previous customer types. To develop an FPTAS, we discretize the state

space of the dynamic program by using a geometric grid. Ultimately, we show that if there are n

products among which the firm picks an assortment, then we obtain a solution that provides a 1−ε

fraction of the optimal expected revenue in O(n4 log(nRmax) log(nVmax) log(nRmax Vmax/λmin) / ε3)

operations, where Rmax is the largest value for the product of the revenue and the preference weight

of a product, Vmax is the largest value for the preference weight of a product and λmin is the smallest

value for the probability of arrival for a particular customer type.

It turns out that if we do not have a limit on the total space consumption of the offered products,

then we can solve our dynamic program more efficiently. We show that the running time of our

FPTAS given in the previous paragraph reduces to O(n3 log(nRmax) log(nVmax) / ε2) operations,

when we do not have a limit on the total space consumption of the offered products.

Multinomial Logit Model with Nested Consideration Sets. In our choice model, the

consideration sets of customers of different types are nested. In particular, assuming that there are

m customer types and using Nk to denote the consideration set of customers of type k, we index the

customer types {1, . . . ,m} such that N1 ⊆ . . . ⊆ Nm. Assuming that there are n products, we index

the products {1, . . . , n} such that products {1, . . . , |N1|} correspond to the products in N1, products

{|N1|+1, . . . , |N2|} correspond to the products in N2 \N1 and so on. So, without loss of generality,

we can assume that the consideration set of customers of a particular type is of the form {1, . . . , j}

for some j = 1, . . . , n. In this case, since the customer types differ in their consideration sets, the

number of customer types is at most n. Without loss of generality, we can assume that the number

of customer types is n, if necessary, by defining additional dummy customer types.

Consideration sets of the form {1, . . . , j} for some j = 1, . . . , n become useful when different

customers drop products from consideration based on cutoff values for a particular attribute, such

3

as price or quality. For example, ordering the products such that product 1 has the lowest price

and product n has the highest price, customers may form their consideration sets by focusing

on the products within their budget. A customer with a consideration set {1, . . . , j} focuses on

products whose prices do not exceed the price of product j. Similarly, ordering the products such

that product 1 has the highest quality and product n has the lowest quality, a customer with

a consideration set {1, . . . , j} focuses on products whose quality is no worse than the quality of

product j. Goyal et al. (2016) also use such nested consideration sets.

Another feature of our choice model is that the choices of the customers of different types are

governed by the same multinomial logit model, except for the fact that customers of different types

may have different consideration sets and associate different mean utilities with the no purchase

option. This choice model naturally arises when the mean utility that a customer of a particular

type associates with a particular product is a separable function of the features of the product

and the features of the customer type. Under the multinomial logit model, a customer of type

k associates the mean utility µjk with product j. If the set of offered products that are in the

consideration set of customer type k is given by S, then a customer of type k purchases product j

with probability eµjk/(eµ0k +
∑

i∈S e
µik), where µ0k is the mean utility that a customer of type k

associates with the no purchase option. If µjk is a separable function of the features of the product

and the features of the customer type so that µjk = ηj + σk for some ηj and σk, then the last

probability becomes eηj+σk/(eµ0k +
∑

i∈S e
ηi+σk) = eηj/(eµ0k−σk +

∑
i∈S e

ηi), which is the purchase

probability of product j when customers of all types associate the same mean utility ηj with product

j, but customers of type k associate the mean utility µ0k − σk with the no purchase option.

To give a concrete example for our choice model, we consider the choice process of customers

when they shop for canned coffee from a particular store. Different coffee options are characterized

by their prices and qualities. We use rj to denote the price and qj to denote the quality of coffee

option j. Different customer types are characterized by their daily coffee consumption amounts

and shopping frequencies at the particular store. We use ak to denote the daily coffee consumption

amount and fk to denote the shopping frequency of customers of type k. One possible model

for the mean utility µjk that a customer of type k associates with coffee option j is to let µjk =

β1 rj+β
2 qj+β

3 ak+β4 fk, where the parameters {β1, . . . , β4} are estimated from the past purchase

data. Identifying β1 rj + β2 qj with σj and β3 ak + β4 fk with ηk, we obtain the choice model in

the previous paragraph. In addition, if different customers drop coffee options from consideration

4

based on different cutoff values for the price, then we obtain the multinomial logit model with nested

consideration sets. Since the customer types are characterized by their daily coffee consumption

amounts and shopping frequencies, as well as cutoff values for the price, there can be multiple

customer types with the same consideration set, but this does not create a complication for our

approach. An advantage of this model is that once we estimate the parameters {β1, . . . , β4},

given any coffee option with certain price and quality and given any customer type with certain

daily coffee consumption amount and shopping frequency, including those that are not in the past

purchase data, we can immediately estimate the mean utility that this particular customer attaches

to this particular coffee option. A shortcoming of this model is that this model captures the fact

that the mean utility that a customer attaches to a coffee option depends on its price and quality,

but this dependence is, intuitively speaking, captured in terms of the reaction of an “average”

customer, since the parameters β1 and β2 do not depend on the type of a customer. One option is

to use parameters of the form β1k and β2k, capturing the reaction of customers of type k to price and

quality, but we are not able to give a tractable approach for the assortment problem in this case.

Literature Review. There is recent work on models where customers form consideration

sets. Aouad et al. (2016) work with consider-then-choose choice models, where each customer

has a consideration set and a ranking of the products in her consideration set. She purchases

the most preferred available product in her consideration set. The authors study the assortment

problem for a variety of possible consideration set and ranking structures. Jagabathula and Vulcano

(2015) develop a choice model, where the consideration set of a customer includes only the product

purchased during the last visit and the products in promotion, if there are any. They focus on

estimating the parameters of their choice model. Jagabathula and Rusmevichientong (2015) use

a choice model where a customer considers only the products whose prices are below a certain

threshold. The authors focus on parameter estimation and pricing problems. Sahin and Wang

(2014) develop a choice model that incorporates the product search cost so that the set of products

that a customer considers purchasing can be different from what the firm offers. Dai et al. (2014)

develop a revenue management model, where a customer may not even consider purchasing some

of the offered itineraries due to personal restrictions on, for example, time of departure.

In a mixture of multinomial logit models, there are multiple customer types and customers

of different types choose according to different multinomial logit models. The multinomial logit

models for the different customer types may have completely different parameters and consideration

5

sets. McFadden and Train (2000) show that a broad class of choice models can be approximated

arbitrarily accurately by using a mixture of multinomial logit models. Our choice model is a special

case of a mixture of multinomial logit models, where the consideration sets are nested and customers

of different types choose according to the same multinomial logit model except for the fact that

their consideration sets are different. Talluri and van Ryzin (2004) and Gallego et al. (2004) show

that assortment problems under the multinomial logit model with a single customer type can be

solved efficiently. Bront et al. (2009), Desir and Goyal (2014) and Rusmevichientong et al. (2014)

give approximation schemes and heuristics for assortment problems under a mixture of multinomial

logit models. The running times of their approximation schemes increase exponentially with the

number of customer types, whereas our running times increase polynomially.

Network revenue management problems focus on dynamically controlling the availability of

products when there are multiple resources and the sale of a product consumes the capacity

of a combination of resources. Gallego et al. (2004) give a deterministic linear programming

approximation for network revenue management problems, where the number of decision variables

increases exponentially with the number of products. Thus, the deterministic approximation is

commonly solved by using column generation. The column generation subproblem has the same

structure as our assortment problem when customers choose under the multinomial logit model with

nested consideration sets. Gallego et al. (2016) discuss that if we can solve the column generation

subproblem with a certain optimality gap, then we can also solve the deterministic approximation

with a certain optimality gap. Talluri (2011) focuses on the deterministic approximation when

the consideration sets of different customer types are disjoint or have small overlaps. Meissner

et al. (2012) study a tractable relaxation of the deterministic approximation and add the so called

product cuts to tighten it. Stauss and Talluri (2016) use a graph to represent the overlap

between the consideration sets of different customer types and focus on solving the deterministic

approximation when this graph is a tree. Kunnumkal and Talluri (2014) use a relaxation of the

dynamic programming formulation of the network revenue management problem, which yields a

tractable approach when the consideration set of each customer type is small.

Organization. In Section 2, we give a formulation for our assortment problem and show

that our assortment problem is NP-hard. In Section 3, we formulate our assortment problem as a

dynamic program and give an approximation to this dynamic program. In Section 4, we show how

to use the approximate dynamic program to estimate the optimal expected revenue with a certain

6

relative gap. In Section 5, we use our analysis of the approximate dynamic program to develop our

FPTAS. In Section 6, we give a numerical study for our FPTAS. In Section 7, we conclude.

7

2 Assortment Problem and Computational Complexity

In our assortment problem, there are n products indexed by {1, . . . , n}. Associated with product

j, we have a revenue rj and a space consumption cj . The limit on the total space consumption

of the offered products is C. We use the vector x = (x1, . . . , xn) ∈ {0, 1}n to capture the set of

products offered to customers, where xj = 1 if product j is offered and xj = 0 if product j is not

offered. There are n customer types indexed by {1, . . . , n}. A customer arriving into the system

is of type k with probability λk. A customer of type k considers purchasing only the products in

the set {1, . . . , k}. We refer to the set Nk = {1, . . . , k} as the consideration set of a customer of

type k. A customer of type k chooses among the products in her consideration set according to

the multinomial logit model. In particular, using vj to denote the preference weight of product j

and v0 to denote the preference weight of the no purchase option, if the set of products offered to

the customers is given by the vector x, then a customer of type k chooses product j ∈ Nk with

probability Pjk(x) = vj xj/(v0 +
∑

i∈Nk
vi xi). Thus, if the set of products offered to the customers

is given by the vector x, then we obtain an expected revenue of
∑n

k=1 λk
∑

j∈Nk
rj Pjk(x) from a

customer. Our goal is to find the set of products to offer to maximize the expected revenue obtained

from each customer, while making sure that the total space consumption of the offered products

does not exceed the limit on the total space consumption, yielding the problem

z∗ = max
x ∈ {0, 1}n :∑n
j=1 cj xj ≤ C

{
n∑
k=1

λk

{ ∑
j∈Nk

rj Pjk(x)

}}
= max
x ∈ {0, 1}n :∑n
j=1 cj xj ≤ C

{
n∑
k=1

λk

{ ∑k
j=1 rj vj xj

v0 +
∑k

j=1 vj xj

}}
. (1)

In problem (1), we can allow the preference weight v0 of the no purchase option to depend on the

customer type. In particular, if a customer of type k associates the preference weight v0k with

the no purchase option, then we can simply replace v0 in problem (1) with v0k. All of our results

continue to hold under this extension with essentially no modifications and we obtain an FPTAS

with the same running time.

Computational Complexity. In problem (1), the consideration sets are nested and

customers of different types associate the same preference weight with a particular product, as long

as this product is in their consideration sets. Rusmevichientong et al. (2014) consider assortment

problems under a mixture of multinomial logit models, where consideration sets are arbitrary and

customers of different types associate arbitrary preference weights with a particular product. The

8

authors show that the feasibility version of their assortment problem is NP-complete even if there

are only two customer types. In the remainder of this section, we show that the feasibility version of

problem (1) is also NP-complete, despite the fact this problem has the special structure where the

consideration sets are nested and customers of different types associate the same preference weight

with a particular product. This complexity result holds even when there is no limit on the total

space consumption of the offered products. To discuss the computational complexity of problem

(1), we focus on the following feasibility version of the problem.

Assortment Feasibility. We are given an expected revenue threshold K. The assortment

feasibility problem asks whether there exists a vector x ∈ {0, 1}n that provides an expected revenue

of K or more in problem (1).

In the next theorem, we show that the feasibility version of problem (1) is NP-complete. We

defer the proof to Appendix A. The proof of this theorem uses a reduction from the partition

problem, which is a well-known NP-complete problem; see Garey and Johnson (1979).

Theorem 1 The assortment feasibility problem is NP-complete.

The computational complexity result in Theorem 1 motivates us to look for an FPTAS for

problem (1). In the next section, we give a dynamic programming formulation for problem (1). This

dynamic program forms the starting point for our FPTAS.

3 Dynamic Programming Formulation

To develop an FPTAS for problem (1), we follow three steps. First, we formulate problem (1) as

a dynamic program, but there are exponentially many possible values for the state variable in this

dynamic programming formulation. So, we give an approximation to the dynamic programming

formulation, where there are polynomially many possible values for the state variable. Second,

noting that z∗ is the optimal expected revenue in problem (1), we show that we can use the value

functions in the approximate dynamic program to obtain an estimate z̃ of the optimal expected

revenue that satisfies z̃ ≥ (1 − ε) z∗ for an appropriate choice of ε ∈ (0, 1). Third, we follow

the optimal state and action trajectory in the approximate dynamic program to obtain a feasible

solution to problem (1). Also, using Rev to denote the expected revenue corresponding to this

feasible solution, we show that Rev ≥ z̃. In this case, we obtain Rev ≥ z̃ ≥ (1 − ε) z∗, which

9

bounds the relative gap between the expected revenue from the solution obtained by using the

approximate dynamic program and the optimal expected revenue. In this section, we focus on the

first step. In the next two sections, we focus on the second and third steps.

To formulate problem (1) as a dynamic program, assume that we have already decided which

of the products in {1, . . . , j − 1} are offered to the customers and these decisions are given by

(x1, . . . , xj−1) ∈ {0, 1}j−1, where xk = 1 if product k is offered and xk = 0 if product k is

not offered. We use Pj to denote
∑j−1

k=1 rk vk xk and Sj to denote
∑j−1

k=1 vk xk. In this case, the

expected revenue from a customer of type j is given by λj
∑j

k=1 rk vk xk/(v0 +
∑j

k=1 vk xk) =

λj (Pj + rj vj xj)/(v0 + Sj + vj xj). Therefore, once we decide whether product j is offered, we

can compute the expected revenue from a customer of type j as a function of only Pj , Sj and

xj . Furthermore, we can compute Pj+1 =
∑j

k=1 rk vk xk and Sj+1 =
∑j

k=1 vk xk as Pj+1 =

Pj + rj vj xj and Sj+1 = Sj + vj xj , which are also functions of only Pj , Sj and xj . So, given that

the decisions for the products in {1, . . . , j−1} satisfy Pj =
∑j−1

k=1 rk vk xk and Sj =
∑j−1

k=1 vk xk and

we want to generate an expected revenue of Rj or more from customers of type {j, . . . , n}, we let

Vj(Pj , Sj , Rj) be the minimum total space consumption of the products in {j, . . . , n} to do so. We

can compute {Vj(·, ·, ·) : j = 1, . . . , n} by using the dynamic program

Vj(Pj , Sj , Rj) = min
xj∈{0,1}

{
cj xj + Vj+1

(
Pj + rj vj xj , Sj + vj xj , Rj − λj Pj+rj vj xj

v0+Sj+vj xj

)}
, (2)

with the boundary condition that Vn+1(·, ·, Rn+1) = 0 if Rn+1 ≤ 0 and Vn+1(·, ·, Rn+1) = ∞ if

Rn+1 > 0. The dynamic program above follows from the following reasoning. Given that the

decisions for the products in {1, . . . , j − 1} satisfy Pj =
∑j−1

k=1 rk vk xk and Sj =
∑j−1

k=1 vk xk, as

mentioned above, the values of Pj+1 =
∑j

k=1 rk vk xk and Sj+1 =
∑j

k=1 vk xk can be computed

as Pj+1 = Pj + rj vj xj and Sj+1 = Sj + vj xj . Furthermore, if we want to generate an expected

revenue of Rj or more from customers of type {j, . . . , n}, then after making the decision for product

j, the expected revenue that we want to generate from customers of type {j + 1, . . . , n} is at least

Rj −λj Pj+rj vj xj
v0+Sj+vj xj

. The boundary condition follows from the fact that if we make the decisions for

all of the products and we still have a strictly positive expected revenue that we want to generate,

then there is no set of products that provides the expected revenue that we want to generate. We

refer to Vj(·, ·, ·) as the value function and (Pj , Sj , Rj) as the state variable for decision epoch j. To

compute the value functions {Vj(·, ·, ·) : j = 1, . . . , n}, we move over the decision epochs in reverse

order. For all j = n, . . . , 1, given that we know the value function Vj+1(·, ·, ·), we compute the value

10

function Vj(·, ·, ·). Note that V1(0, 0, R1) is the minimum total space consumption of the products

in {1, . . . , n} given that we want to generate an expected revenue of R1 or more from customers of

type {1, . . . , n}. Thus, the optimal objective value of problem (1) is given by

z∗ = max
z∈<+

{
z : V1(0, 0, z) ≤ C

}
, (3)

which is the largest expected revenue that we can generate from customers of type {1, . . . , n}

while ensuring that the total space consumption of the products in {1, . . . , n} does not exceed

C. It is important to emphasize that the dynamic program in (2) does not provide a tractable

solution approach for problem (1). In particular, since there are exponentially many possible sets

of products that we can offer to the customers, there are exponentially many possible values for the

state variable (Pj , Sj , Rj) as well, which implies that computing the value function Vj(Pj , Sj , Rj) for

all possible values for the state variable (Pj , Sj , Rj) is intractable. In the remainder of this section,

we give an approximate version of the dynamic program in (2), which is based on discretizing the

state space in the original dynamic program. The approximate dynamic program forms the basis

for the FPTAS that we develop for problem (1).

To approximate the dynamic program in (2), we choose a value of ρ > 0 and focus on the grid

points in the domain Domρ = {0} ∪ {(1 + ρ)k : k = . . . ,−1, 0, 1, . . .}, which is a geometric grid of

size 1 + ρ augmented by an additional point at zero. The specific choice of ρ is determined later,

but we hint that the ultimate choice of ρ = ε/6n will yield a performance guarantee of 1 − ε for

ε ∈ (0, 1). We define the round down operator b·c that rounds its argument down to the closest

value in Domρ. In other words, we have bxc = max{y ∈ Domρ : y ≤ x}. Similarly, we define the

round up operator d·e that rounds its argument up to the closest value in Domρ, which is given by

dxe = min{y ∈ Domρ : y ≥ x}. The results of the round up and round down operators d·e and b·c

depend on the value of ρ, but for notational brevity, we do not make this dependence explicit. We

consider an approximate version of the dynamic program in (2) given by

Θj(Pj , Sj , Rj) = min
xj∈{0,1}

{
cj xj + Θj+1

(
bPj + rj vj xjc , dSj + vj xje , dRj − λj Pj+rj vj xj

v0+Sj+vj xj
e
)}

, (4)

with the boundary condition that Θn+1(·, ·, Rn+1) = 0 if Rn+1 ≤ 0 and Θn+1(·, ·, Rn+1) = ∞ if

Rn+1 > 0. On the right side above, we observe that we round the first component of the state

variable down, whereas we round the second and third components of the state variable up, which

11

ultimately allows us to bound the gap between the value functions Vj(·, ·, ·) and Θj(·, ·, ·) in (2)

and (4). Noting that the results of the round up and down operators depend on the value of ρ,

the value functions {Θj(·, ·, ·) : j = 1, . . . , n} depend on the value of ρ as well, but for notational

brevity, we do not make this dependence explicit. We can bound each component of the state

variable (Pj , Sj , Rj) in the dynamic program in (4). In particular, without loss of generality, we

assume that rj ≥ 1 and vj ≥ 1 for all j = 1, . . . , n. If either one of these conditions does not hold,

then we can scale up all revenues or all preference weights by the same factor without changing the

optimal solution to problem (1). For notational brevity, we let Rmax = max{rj vj : j = 1, . . . , n}

and Vmax = max{vj : j = 0, . . . , n}. In the next lemma, we give upper bounds on each component

of the state variable (Pj , Sj , Rj). The proof of this lemma uses a simple induction over the decision

epochs and we defer the proof to Appendix B.

Lemma 2 For any (x1, . . . , xn) ∈ {0, 1}n and R1 ∈ <+, assume that {(Pj , Sj , Rj) : j = 1, . . . , n}

are computed as Pj+1 = bPj + rj vj xjc, Sj+1 = dSj + vj xje and Rj+1 = dRj − λj Pj+rj vj xj
v0+Sj+vj xj

e with

P1 = 0 and S1 = 0. Then, letting γ = (exp(nρ) − 1)/ρ, we have Pj ≤ nRmax, Sj ≤ γ Vmax and

Rj ≤ Rn+1 + (λj + . . .+ λn)Rmax for all j = 1, . . . , n.

We can use Lemma 2 to give upper and lower bounds on each component of the state variable

(Pj , Sj , Rj) as follows. Since rj ≥ 1 and vj ≥ 1 for all j = 1, . . . , n, the smallest nonzero values of

Pj and Sj are one. Also, by Lemma 2, we have Pj ≤ nRmax and Sj ≤ γ Vmax. Therefore, we can

assume that Pj ∈ {0}∪ [1, nRmax] and Sj ∈ {0}∪ [1, γ Vmax] for all j = 1, . . . , n. Also, if Rj > Rmax,

then by Lemma 2, we have Rn+1 ≥ Rj − (λj + . . .+ λn)Rmax > (1− (λj + . . .+ λn))Rmax ≥ 0. In

this case, noting the boundary condition of the dynamic program in (4), if Rj > Rmax, then we

immediately have Θj(·, ·, Rj) =∞. In other words, there is no need to compute Θj(·, ·, Rj) explicitly

for Rj > Rmax. On the other hand, we let λmin = min{λj : j = 1, . . . , n} for notational brevity. By

the discussion in this paragraph, we have Pj ∈ {0} ∪ [1, nRmax] and Sj ∈ {0} ∪ [1, γ Vmax]. In this

case, noting that rj ≥ 1 and vj ≥ 1 for all j = 1, . . . , n, if λj (Pj + rj vj xj)/(v0 + Sj + vj xj) is

nonzero, then it satisfies λj (Pj + rj vj xj)/(v0 + Sj + vj xj) ≥ λmin/((2 + γ)Vmax). That is, the

quantity λj (Pj + rj vj xj)/(v0 + Sj + vj xj) is either zero or is at least λmin/((2 + γ)Vmax). This

observation implies that if the expected revenue that we want to generate from customer types

{j, . . . , n} is above zero but below λmin/((2 + γ)Vmax), then we can increase the expected revenue

that we want to generate up to λmin/((2 + γ)Vmax), since offering any of the products to any of

12

the customer types immediately yields an expected revenue of at least λmin/((2 + γ)Vmax). In this

case, we can assume that Rj ∈ {0} ∪ [λmin/((2 + γ)Vmax), Rmax]. On the right side of (4), we need

Θj+1(Pj+1, Sj+1, Rj+1) for the values of (Pj+1, Sj+1, Rj+1) ∈ Domρ×Domρ×Domρ. So, noting the

bounds for the different components of the state variable (Pj , Sj , Rj), we need to store the value

of Θj(Pj , Sj , Sj) only for (Pj , Sj , Rj) ∈ Domρ × Domρ × Domρ such that Pj ∈ {0} ∪ [1, dnRmaxe],

Sj ∈ {0} ∪ [1, dγ Vmaxe] and Rj ∈ {0} ∪ [bλmin/((2 + γ)Vmax)c, dRmaxe].

4 Estimating the Optimal Expected Revenue

Noting that z∗ is the optimal expected revenue in problem (1), in this section, we show that we

can use the approximate dynamic program in (4) to obtain an estimate z̃ of the optimal expected

revenue that satisfies z̃ ≥ (1 − ε) z∗ for an appropriate choice of ε ∈ (0, 1). In the next lemma,

we give elementary properties of the value functions computed through the dynamic program in

(4). The first part of the lemma shows that if we decrease Pj , increase Sj or increase Rj , then

Θj(Pj , Sj , Rj) increases. The second part of the lemma shows how we can counterbalance a decrease

in Pj and an increase in Sj by a decrease in Rj to ensure that the value function Θj(Pj , Sj , Rj)

does not increase. In particular, if we decrease Pj by at most a factor of 1 + ρ and increase Sj by

at most a factor of 1 + ρ, then we can decrease Rj by at least a factor of (1 + ρ)2 to ensure that

Θj(Pj , Sj , Rj) does not increase. We defer the proof of this lemma to Appendix C.

Lemma 3 (a) Assume that (Pj , Sj , Rj) and (P̂j , Ŝj , R̂j) satisfy P̂j ≤ Pj, Ŝj ≥ Sj and R̂j ≥ Rj.

Then, we have Θj(P̂j , Ŝj , R̂j) ≥ Θj(Pj , Sj , Rj) for all j = 1, . . . , n.

(b) Assume that (Pj , Sj , Rj) and (P̂j , Ŝj , R̂j) satisfy P̂j ≥ Pj/(1 + ρ), Ŝj ≤ (1 + ρ)Sj and

R̂j ≤ Rj/(1 + ρ)2. Then, we have Θj(P̂j , Ŝj , R̂j) ≤ Θj(Pj , Sj , Rj) for all j = 1, . . . , n.

In the next proposition, we build on Lemma 3 to show that we can decrease the third component

of the state variable (Pj , Sj , Rj) by a factor of (1 + ρ)3 (n−j) to obtain a lower bound on the value

function Vj(·, ·, ·) by using the value function Θj(·, ·, ·). This proposition is the critical ingredient in

the development of our FPTAS and it ultimately allows us to obtain an estimate z̃ of the optimal

expected revenue that satisfies z̃ ≥ z∗/(1 + ρ)3n.

Proposition 4 For all j = 1, . . . , n, we have Vj(Pj , Sj , Rj) ≥ Θj(Pj , Sj , Rj / (1 + ρ)3(n−j)).

13

Proof. We show the result by using induction over the decision epochs in reverse order. For

the decision epoch n + 1, by the boundary condition of the dynamic program in (2), we have

Vn+1(·, ·, Rn+1) = 0 if Rn+1 ≤ 0 and Vn+1(·, ·, Rn+1) = ∞ if Rn+1 > 0. Similarly, by the

boundary condition of the dynamic program in (4), we have Θn+1(·, ·, Rn+1) = 0 if Rn+1 ≤ 0

and Θn+1(·, ·, Rn+1) = ∞ if Rn+1 > 0. We have Rn+1 ≤ 0 if and only if (1 + ρ)3Rn+1 ≤ 0. So,

we obtain Vn+1(·, ·, Rn+1) = Θn+1(·, ·, (1 + ρ)3Rn+1) and the result holds for decision epoch

n + 1. Assuming that the result holds for decision epoch j + 1, we show that the result holds

for decision epoch j. For notational brevity, we let β = 1/(1 + ρ)3(n−j). We fix an arbitrary

value for the state variable (Pj , Sj , Rj) and xj ∈ {0, 1}. For the fixed values of (Pj , Sj , Rj) and

xj ∈ {0, 1}, we let Pj+1 = Pj + rj vj xj , Sj+1 = Sj + vj xj , Rj+1 = Rj − λj
Pj+rj vj xj
v0+Sj+vj xj

and

Rβj+1 = β Rj − λj Pj+rj vj xj
v0+Sj+vj xj

. By the induction assumption, we have

Vj+1(Pj+1, Sj+1, Rj+1) ≥ Θj+1(Pj+1, Sj+1, Rj+1/(1 + ρ)3(n−j−1)). (5)

Furthermore, we observe that we can lower bound Rj+1/(1 + ρ)3(n−j−1) by (1 + ρ)3Rβj+1, which

follows from the chain of inequalities

1

(1 + ρ)3(n−j−1)
Rj+1 = (1 + ρ)3 β Rj+1 = (1 + ρ)3 β

{
Rj − λj

Pj + rj vj xj
v0 + Sj + vj xj

}

≥ (1 + ρ)3

{
β Rj − λj

Pj + rj vj xj
v0 + Sj + vj xj

}
= (1 + ρ)3Rβj+1.

Using the first part of Lemma 3 for decision epoch j + 1, Θj+1(·, ·, Rj+1) is increasing in Rj+1, in

which case, noting the inequality above, we obtain

Θj+1(Pj+1, Sj+1, Rj+1/(1 + ρ)3(n−j−1)) ≥ Θj+1(Pj+1, Sj+1, (1 + ρ)3Rβj+1). (6)

Since bPj+1c ≥ Pj+1/(1 + ρ), dSj+1e ≤ (1 + ρ)Sj+1 and (1 + ρ)Rβj+1 = (1 + ρ)3Rβj+1/(1 + ρ)2 by

the definition of d·e and b·c, using the second part of Lemma 3 for decision epoch j + 1, we get

Θj+1(Pj+1, Sj+1, (1 + ρ)3Rβj+1) ≥ Θj+1(bPj+1c, dSj+1e, (1 + ρ)Rβj+1). (7)

For the moment, assume that Rβj+1 > 0. Since (1 + ρ)Rβj+1 ≥ dR
β
j+1e and Θj+1(·, ·, Rj+1) is

increasing in Rj+1 by the first part of Lemma 3, we get Θj+1(bPj+1c, dSj+1e, (1 + ρ)Rβj+1) ≥

14

Θj+1(bPj+1c, dSj+1e, dRβj+1e). Next, assume that Rβj+1 ≤ 0. The third component of the state

variable in the dynamic program in (4) can only decrease as the decision epochs progress and it is

the sign of this component that affects the boundary condition. Thus, if R̂j+1 and R̃j+1 both satisfy

R̂j+1 ≤ 0 and R̃j+1 ≤ 0, then we have Θj+1(·, ·, R̂j+1) = 0 = Θj+1(·, ·, R̃j+1). So, if (1 + ρ)Rβj+1 ≤

0, then we have dRβj+1e ≤ 0 as well and we obtain Θj+1(bPj+1c , dSj+1e , (1 + ρ)Rβj+1) = 0 =

Θj+1(bPj+1c , dSj+1e , dRβj+1e). Thus, under both assumptions, we obtain

Θj+1(bPj+1c, dSj+1e, (1 + ρ)Rβj+1) ≥ Θj+1(bPj+1c, dSj+1e, dRβj+1e). (8)

Noting the definitions of Pj+1, Sj+1, Rj+1 and Rβj+1 and combining the inequalities in (5), (6), (7)

and (8), it follows that

Vj+1

(
Pj + rj vj xj , Sj + vj xj , Rj − λj Pj+rj vj xj

v0+Sj+vj xj

)
= Vj+1(Pj+1, Sj+1, Rj+1)

≥ Θj+1(bPj+1c, dSj+1e, dRβj+1e) = Θj+1

(
bPj + rj vj xjc , dSj + vj xje , dβ Rj − λj Pj+rj vj xj

v0+Sj+vj xj
e
)
.

Since our choice of xj ∈ {0, 1} is arbitrary, the inequality above holds for any xj ∈ {0, 1}. Adding

cj xj to both sides of the inequality above and taking the minimum over xj ∈ {0, 1}, we get

Vj(Pj , Sj , Rj) = min
xj∈{0,1}

{
cj xj + Vj+1

(
Pj + rj vj xj , Sj + vj xj , Rj − λj Pj+rj vj xj

v0+Sj+vj xj

)}

≥ min
xj∈{0,1}

{
cj xj + Θj+1

(
bPj + rj vj xjc , dSj + vj xje , dβ Rj − λj Pj+rj vj xj

v0+Sj+vj xj
e
)}

=Θj(Pj , Sj , β Rj),

where the two equalities above use (2) and (4). Since β = 1/(1 + ρ)3(n−j), the chain of inequalities

above yields Vj(Pj , Sj , Rj) ≥ Θj(Pj , Sj , Rj/(1 + ρ)3(n−j)), which is the desired result. �

In the next corollary, we build on Proposition 4 to show that we can use {Θj(·, ·, ·) : j = 1, . . . , n}

to obtain an estimate z̃ of the optimal expected revenue that satisfies z̃ ≥ z∗/(1 + ρ)3n.

Corollary 5 Let z̃ = max{z ∈ Domρ : Θ1(0, 0, z) ≤ C, z ∈ [bλmin/((2 + γ)Vmax)c, dRmaxe]} and

z∗ be the optimal objective value of problem (1). Then, we have z̃ ≥ z∗/(1 + ρ)3n.

Proof. First, assume that bz∗/(1 + ρ)3(n−1)c ≥ bλmin/((2 + γ)Vmax)c. It is simple to check that

the optimal objective value of problem (1) satisfies z∗ ≤ Rmax so that bz∗/(1 + ρ)3(n−1)c ≤

z∗ ≤ dRmaxe. Note that z∗ is also given by the optimal objective value of problem (3). Thus,

15

we have V1(0, 0, z
∗) ≤ C. So, it follows that C ≥ V1(0, 0, z

∗) ≥ Θ1(0, 0, z
∗/(1 + ρ)3(n−1)) ≥

Θ1(0, 0, bz∗/(1 + ρ)3(n−1)c), where the second inequality is by Proposition 4 and the third inequality

is by the first part of Lemma 3. This discussion shows that bz∗/(1 + ρ)3(n−1)c is a feasible solution

to the problem in the corollary providing an objective value of bz∗/(1 + ρ)3(n−1)c. Since z̃ is the

optimal objective value of this problem, we get z̃ ≥ bz∗/(1 + ρ)3(n−1)c ≥ z∗/(1 + ρ)3n, where

the second inequality is by the fact that b(1 + ρ)xc ≥ x for x ∈ <+. Second, assume that

bz∗/(1 + ρ)3(n−1)c < bλmin/((2 + γ)Vmax)c. Since z̃ is a feasible solution to the problem in the

corollary, we have z̃ ≥ bλmin/((2 + γ)Vmax)c > bz∗/(1 + ρ)3(n−1)c ≥ z∗/(1 + ρ)3n. �

Corollary 5 does not yet yield a solution to problem (1) with a performance guarantee, since

due to the round up and down operators in the dynamic program in (4), the estimate z̃ of the

optimal expected revenue may not correspond to the expected revenue from a solution.

5 Fully Polynomial Time Approximation Scheme

In this section, we show that we can follow the optimal state and action trajectory in the dynamic

program in (4) to obtain a feasible solution to problem (1). Also, the expected revenue from this

solution is no worse than z̃ given in Corollary 5. Using these results, we give our FPTAS. The next

algorithm follows the optimal state and action trajectory in the dynamic program in (4).

Step 0. Using the dynamic program in (4), for all j = 1, . . . , n, compute Θj(Pj , Sj , Rj) for all

(Pj , Sj , Rj) ∈ Domρ × Domρ × Domρ such that Pj ∈ {0} ∪ [1, dnRmaxe], Sj ∈ {0} ∪ [1, dγ Vmaxe]

and Rj ∈ {0} ∪ [bλmin/((2 + γ)Vmax)c, dRmaxe]. Set j = 1, P̃1 = 0, S̃1 = 0 and R̃1 =

max{z ∈ Domρ : Θ1(0, 0, z) ≤ C, z ∈ [bλmin/((2 + γ)Vmax)c, dRmaxe]}.

Step 1. Given the values of P̃j , S̃j and R̃j , to decide whether to offer product j, let x̃j be an

optimal solution to the problem

min
xj∈{0,1}

{
cj xj + Θj+1

(
bP̃j + rj vj xjc , dS̃j + vj xje , dR̃j − λj P̃j+rj vj xj

v0+S̃j+vj xj
e
)}

. (9)

Set P̃j+1 = bP̃j + rj vj x̃jc, S̃j+1 = dS̃j + vj x̃je and R̃j+1 = dR̃j − λj P̃j+rj vj x̃j
v0+S̃j+vj x̃j

e.

Step 2. Increase j by 1. If j ≤ n, then go to Step 1. Otherwise, stop and return (x̃1, . . . , x̃n).

Since the results of the round up and down operators depend on the value of ρ, the output

of the algorithm above depends on the value of ρ as well and we refer to this algorithm

16

as the Apprx(ρ) algorithm, where Apprx stands for approximation and ρ emphasizes its

dependence on ρ. The Apprx(ρ) algorithm follows the optimal state and action trajectory in

the dynamic program in (4) starting from the initial state (P̃1, S̃1, R̃1), where P̃1 = 0, S̃1 = 0 and

R̃1 = max{z ∈ Domρ : Θ1(0, 0, z) ≤ C, z ∈ [bλmin/((2 + γ)Vmax)c, dRmaxe]}. The product offer

decisions from the algorithm are (x̃1, . . . , x̃n). Our goal is to show that these product offer decisions

are feasible to problem (1) and they provide a performance guarantee. In the next lemma, we show

that the product offer decisions from the Apprx(ρ) algorithm are feasible to problem (1).

Lemma 6 Assume that (x̃1, . . . , x̃n) are generated by the Apprx(ρ) algorithm. Then, we have∑n
j=1 cj x̃j ≤ C.

Proof. We have R̃1 = max{z ∈ Domρ : Θ1(0, 0, z) ≤ C, z ∈ [bλmin/((2 + γ)Vmax)c, dRmaxe]}

in Step 0 of the Apprx(ρ) algorithm, which implies that Θ1(0, 0, R̃1) ≤ C. In this case, since

P̃1 = 0 and S̃1 = 0 in the Apprx(ρ) algorithm, we obtain Θ1(P̃1, S̃1, R̃1) ≤ C. Noting the

definitions of P̃j+1, S̃j+1 and R̃j+1 in Step 1 of the Apprx(ρ) algorithm and using the fact that

x̃j is the optimal solution to problem (9), if we compare problems (4) and (9), then it follows

that Θj(P̃j , S̃j , R̃j) = cj x̃j + Θj+1(P̃j+1, S̃j+1, R̃j+1) for all j = 1, . . . , n. Adding these equalities

over all j = 1, . . . , n, we obtain Θ1(R̃1, S̃1, R̃1) =
∑n

j=1 cj x̃j + Θn+1(P̃n+1, S̃n+1, R̃n+1). Thus,

noting that Θ1(P̃1, S̃1, R̃1) ≤ C, we have
∑n

j=1 cj x̃j + Θn+1(P̃n+1, S̃n+1, R̃n+1) ≤ C. By the

boundary condition of the dynamic program in (4), Θn+1(P̃n+1, S̃n+1, R̃n+1) is either zero or

infinity. If Θn+1(P̃n+1, S̃n+1, R̃n+1) =∞, then we get a contradiction to the inequality
∑n

j=1 cj x̃j+

Θn+1(P̃n+1, S̃n+1, R̃n+1) ≤ C. Therefore, we must have Θn+1(P̃n+1, S̃n+1, R̃n+1) = 0. In this case,

since we have
∑n

j=1 cj x̃j + Θn+1(P̃n+1, S̃n+1, R̃n+1) ≤ C, we get
∑n

j=1 cj x̃j ≤ C. �

In the next lemma, we show that the product offer decisions from the Apprx(ρ)

algorithm provide a performance guarantee for problem (1). A large part of the proof

of this lemma shows that the expected revenue from the product offer decisions generated

by the Apprx(ρ) algorithm is no worse than the optimal expected revenue estimate R̃1 =

max{z ∈ Domρ : Θ1(0, 0, z) ≤ C, z ∈ [bλmin/((2 + γ)Vmax)c, dRmaxe]}.

Lemma 7 Let Rev be the expected revenue from the product offer decisions generated by the

Apprx(ρ) algorithm and z∗ be the optimal objective value of problem (1). Then, we have

Rev ≥ z∗/(1 + ρ)3n.

17

Proof. Assume that (P̃1, . . . , P̃n+1), (S̃1, . . . , S̃n+1) and (R̃1, . . . , R̃n+1) are generated by the

Apprx(ρ) algorithm. Noting the definition of R̃1 in Step 0 of Apprx(ρ) algorithm, by Corollary

5, we have R̃1 ≥ z∗/(1 + ρ)3n. We let (x̃1, . . . , x̃n) be the product offer decisions generated

by the Apprx(ρ) algorithm. By the expected revenue expression in (1), we have Rev =∑n
j=1 λj

∑j
k=1 rk vk x̃k

v0+
∑j

k=1 vk x̃k
. In the rest of the proof, we show that Rev ≥ R̃1, in which case, the desired

result follows by the fact that Rev ≥ R̃1 ≥ z∗/(1+ρ)3n. Since P̃k+1 = bP̃k+rk vk x̃kc in Step 1 of the

Apprx(ρ) algorithm, we have P̃k+1 ≤ P̃k + rk vk x̃k. Adding this inequality over all k = 1, . . . , j−1

and noting that P̃1 = 0, we get P̃j ≤
∑j−1

k=1 rk vk x̃k. A similar argument yields S̃j ≥
∑j−1

k=1 vk x̃k as

well. Since R̃j+1 = dR̃j − λj P̃j+rj vj x̃j
v0+S̃j+vj x̃j

e in Step 1 of the Apprx(ρ) algorithm, we get

R̃j+1 ≥ R̃j − λj
P̃j + rj vj x̃j

v0 + S̃j + vj x̃j
≥ R̃j − λj

∑j
k=1 rk vk x̃k

v0 +
∑j

k=1 vk x̃k
,

where the second inequality is by the fact that P̃j ≤
∑j−1

k=1 rk vk x̃k and S̃j ≥
∑j−1

k=1 vk x̃k for

all j = 1, . . . , n. Adding the chain of inequalities above over all j = 1, . . . , n, we get R̃n+1 ≥

R̃1 −
∑n

j=1 λj

∑j
k=1 rk vk x̃k

v0+
∑j

k=1 vk x̃k
= R̃1 − Rev. By using the same argument at the end of the proof of

Lemma 6, we have Θn+1(P̃n+1, S̃n+1, R̃n+1) = 0, but Θn+1(P̃n+1, S̃n+1, R̃n+1) = 0 if and only if

R̃n+1 ≤ 0. Thus, we must have R̃n+1 ≤ 0. In this case, we obtain 0 ≥ R̃n+1 ≥ R̃1 −Rev. �

Next, we focus on the number of operations required to run the Apprx(ρ) algorithm. The

number of operations required to compute the value functions {Θj(·, ·, ·) : j = 1, . . . , n} in Step 0

of the Apprx(ρ) algorithm dominates the number of operations required to run the other steps. In

Step 0 of the Apprx(ρ) algorithm, we need to compute Θj(Pj , Sj , Rj) for all j = 1, . . . , n and

(Pj , Sj , Rj) ∈ Domρ × Domρ × Domρ such that Pj ∈ {0} ∪ [1, dnRmaxe], Sj ∈ {0} ∪ [1, dγ Vmaxe]

and Rj ∈ {0} ∪ [bλmin/((2 + γ)Vmax)c, dRmaxe]. By the definition of Domρ, there are

O

(
log(nRmax)

log(1 + ρ)
×log(γ Vmax)

log(1 + ρ)
×

log((1+γ)Rmax Vmax

λmin
)

log(1 + ρ)

)
=O

(
log(nRmax) log(γ Vmax) log((1+γ)Rmax Vmax

λmin
)

ρ3

)

possible values of (Pj , Sj , Rj) ∈ Domρ × Domρ × Domρ such that Pj ∈ {0} ∪ [1, dnRmaxe],

Sj ∈ {0}∪[1, dγ Vmaxe] and Rj ∈ {0} ∪ [bλmin/((2 + γ)Vmax)c, dRmaxe]. Thus, we need to compute

Θj(Pj , Sj , Rj) for O(log(nRmax) log(γ Vmax) log((1 + γ)Rmax Vmax/λmin)/ρ3) different values of

(Pj , Sj , Rj). We compute the value functions {Θj(·, ·, ·) : j = 1, . . . , n} by moving over the decision

epochs in reverse order in the dynamic program in (4) and computing Θj(Pj , SjRj) for a certain

value of (Pj , Sj , Rj) takes O(1) operations. So, since there are n decision epochs, we can run

18

Step 0 of the Apprx(ρ) algorithm in O(n log(nRmax) log(γ Vmax) log((1 + γ)Rmax Vmax/λmin)/ρ3)

operations. In the next theorem, we use this observation to give an FPTAS for problem (1).

Theorem 8 Letting z∗ be the optimal objective value of problem (1), there exists an algorithm such

that for any ε ∈ (0, 1), the algorithm runs in O(n4 log(nRmax) log(nVmax) log(nRmax Vmax/λmin)/ε3)

operations and generates product offer decisions that are feasible to problem (1), providing an

expected revenue of at least (1− ε) z∗.

Proof. We run the Apprx(ρ) algorithm with ρ = ε/(6n) and let Rev be the expected revenue from

the product offer decisions generated by this algorithm. By Lemma 6, the product offer decisions

are feasible to problem (1). By Lemma 7, we get z∗ ≤ (1 + ε/(6n))3nRev. Since (1 + x/n)n ≤

exp(x) ≤ (1 + 2x) for x ∈ (0, 1/2), we get (1 + ε/(6n))3n ≤ exp(ε/2) ≤ 1 + ε for ε ∈ (0, 1). In

this case, we obtain Rev ≥ z∗/(1 + ε/(6n))3n ≥ z∗/(1 + ε) ≥ (1 − ε) z∗. So, the expected revenue

from the product offer decisions is at least (1− ε) z∗. If we set ρ = ε/(6n), then we have nρ ≤ 1/6

so that γ = (exp(nρ) − 1)/ρ ≤ (1 + 2nρ − 1)/ρ = 2n by the inequalities at the beginning of

the proof. By the discussion right before the theorem, we can run the Apprx(ρ) algorithm in

O(n log(nRmax) log(γ Vmax) log((1 + γ)Rmax Vmax/λmin)/ρ3) operations. Replacing ρ with ε/6n

and γ with the upper bound of 2n in the last expression yields the desired running time. �

If we do not have a limit on the total space consumption of the offered products, then we can

solve the dynamic program in (4) more efficiently, in which case, the running time of our FPTAS

reduces to O(n3 log(nRmax) log(nVmax) / ε2) operations. In Appendix D, we analyze the running

time of our FPTAS for the uncapacitated version of the assortment problem.

6 Numerical Study

In our numerical study, we test the performance of our FPTAS on a large number of problem

instances. We generate each problem instance as follows. We generate the revenue rj of product

j from the uniform distribution over [1, R̄], where R̄ is a parameter that we vary. We reindex

(r1, . . . , rn) such that r1 ≤ . . . ≤ rn. Thus, noting that the consideration set of a customer of type

k is {1, . . . , k}, a customer of type k is interested in the k products with the lowest prices. To come

up with the arrival probability λk of customer type k, we generate βj from the uniform distribution

over [0, 1] for all j = 1, . . . , n and set λk = βk/
∑n

j=1 βj . The preference weight of the no purchase

19

option is v0 = 10. We use two approaches to generate the preference weights of the products.

In the first approach, we simply generate the preference weight vj of product j from the uniform

distribution over [1, 50]. In the second approach, we generate the preference weight vj of product

j from the uniform distribution over [1, 50] and reindex (v1, . . . , vn) such that v1 ≥ . . . ≥ vn. In the

first approach, referred to as NR, the preference weight of a product does not have any relationship

with the price of the product. In the second approach, referred to as PD, the products with higher

prices have lower preference weights. In all of our problem instances, the number of products is

n = 36 and there is no limit on the total space consumption of the offered products.

Using PR ∈ {NR,PD} to denote the approach used to generate the preference weights, we vary

(R̄,PR) over {5, 25, 50}×{NR,PD}, yielding six combinations. In each combination, we generate 100

problem instances by using the approach above. For each problem instance, we run the Apprx(ρ)

algorithm to get a solution providing at least 1/2, 3/4 or 9/10 of the optimal expected revenue. By

the proof of Theorem 8, we can set ρ = ε/(6n) to get a solution providing at least a 1− ε fraction

of the optimal expected revenue. In Appendix E, we also give a dynamic program to get an upper

bound on the optimal expected revenue. We compare the expected revenues from the solutions

obtained by the Apprx(ρ) algorithm with the optimal expected revenue upper bounds.

We give our numerical results in Table 1. On the left side of the table, we show the combination

(R̄,PR). In the rest of the table, there are three blocks of five columns. The three blocks focus

on the cases where we use the performance guarantees of 1/2, 3/4 and 9/10. The first, second,

third and fourth columns in each block respectively show the average, maximum, 90th percentile

and 75th percentile of the percent gaps between the upper bound on the optimal expected revenue

and the expected revenue from the solution obtained by the Apprx(ρ) algorithm, where these

summary statistics are computed over the 100 problem instances in a particular combination of

(R̄,PR). So, for problem instance `, letting UpBn` be the upper bound on the optimal expected

revenue and Rev` be the expected revenue from the solution obtained by the Apprx(ρ) algorithm,

the first, second, third and fourth columns respectively show the average, maximum, 90th percentile

and 75th percentile of the data {100× UpBn`−Rev`

UpBn` : ` = 1, . . . , 100}. The fifth column shows the

average CPU seconds for the Apprx(ρ) algorithm over the 100 problem instances.

The results in Table 1 indicate that the practical performance of the Apprx(ρ) algorithm can

be quite strong. The maximum optimality gap is 3.89% when we use a performance guarantee of

1/2 and 2.16% when we use a performance guarantee of 9/10. The average CPU seconds is 5.28

20

Combin.
(R̄,PR)

(5,NR)
(5,PD)
(25,NR)
(25,PD)
(50,NR)
(50,PD)

Perf. Guar. of 1 − ε = 1/2

% Gap with Upp. Bnd CPU
Avg. Max. 90th 75th Sec.

1.86 2.91 2.42 2.13 4.47
2.14 3.89 3.16 2.61 5.01
1.55 2.82 2.13 1.80 5.11
1.65 3.23 2.43 2.04 5.68
1.50 2.65 2.18 1.72 5.44
1.56 3.60 2.29 1.82 5.99

Perf. Guar. of 1 − ε = 3/4

% Gap with Upp. Bnd CPU
Avg. Max. 90th 75th Sec.

1.40 1.86 1.65 1.55 19.91
1.52 2.83 1.89 1.70 22.27
1.12 1.78 1.42 1.27 23.12
1.22 2.10 1.55 1.43 25.39
1.08 1.71 1.37 1.26 24.78
1.15 1.84 1.53 1.34 27.21

Perf. Guar. of 1 − ε = 9/10

% Gap with Upp. Bnd CPU
Avg. Max. 90th 75th Sec.

1.25 1.74 1.45 1.37 152.22
1.32 1.84 1.55 1.47 170.50
1.01 1.50 1.24 1.11 179.53
1.14 1.63 1.47 1.26 196.59
0.97 1.42 1.20 1.06 198.34
1.08 2.16 1.42 1.18 217.57

Table 1: Performance of the Apprx(ρ) algorithm with different performance guarantees.

with a performance guarantee of 1/2 and 185.79 with a performance guarantee of 9/10. We carried

out our numerical study in Java 1.7.0 with 2.8 GHz Intel Core i7 CPU and 16 GB RAM. We report

the average CPU seconds, but the CPU seconds vary among the problem instances in a particular

(R̄,PR) combination by no more than 30%. If have 72 products, then the average CPU seconds

is 42.80 with a performance guarantee of 1/2 and 1575.08 with a performance guarantee 9/10, but

we do not report detailed results for 72 products. As expected from the discussion after Theorem

8, doubling the number of products increases the CPU seconds by about a factor of eight.

Meissner et al. (2012) give a linear programming formulation for assortment problems under a

mixture of multinomial logit models. This formulation relaxes the assortment problem by assuming

that we can offer different subsets of products to different customer types, but uses the so called

product cuts to tighten the relaxation. This formulation also provides an upper bound on the

optimal expected revenue. In Appendix F, we give a detailed comparison of our approach with the

linear programming formulation of Meissner et al. (2012). Our numerical results indicate that our

approach compares quite favorably with the linear programming formulation. To give a feel for

our numerical results, the largest percent gap between our upper bound on the optimal expected

revenue and the expected revenue from the solution obtained by our approach is 2.36%. The same

percent gap for the linear programming formulation can be as high as 19.07%.

7 Conclusions and Future Research

One research direction is to work with other consideration set structures. In our FPTAS, customers

of different types associate the same preference weight with a particular product, as long as this

product is in their consideration sets. Also, they have nested consideration sets. In Appendix G,

we show that if customers of different types associate the same preference weight with a particular

product, but they have arbitrary consideration sets, then the assortment problem is NP-hard to

21

approximate within a factor of O(n1−ε) for any ε > 0. To show this result, we build on Desir and

Goyal (2014) and Aouad, Farias, Levi and Segev (2015), but these papers do not immediately

imply our result. Desir and Goyal (2014) use a mixture of multinomial logit models, but customers

of two different types may associate different preference weights with a particular product when

this product is in the consideration sets of both customer types. Aouad, Farias, Levi and Segev

(2015) use a choice model where customers of a certain type rank the products according to a

certain preference order and purchase their most preferred available product. The complexity

result in Appendix G indicates that the case where customers of different types associate the same

preference weight with a particular product but they have arbitrary consideration sets is unlikely

to provide adequate structure to give an FPTAS for the corresponding assortment problem.

To impose some structure on the consideration sets, we can work with the so called interval

consideration sets of the form {k, . . . , j} with k ≤ j. Aouad, Levi and Segev (2015) study dynamic

assortment problems where multiple customers are served with limited inventories. In their choice

model, each customer of a particular type ranks the products according to a preference order of the

form (k, . . . , j) with k ≤ j, where product i is preferred over product i+ 1. She purchases her most

preferred available product. Letting n be the number of products, the authors group the customer

types into O(log n) groups. The dynamic assortment problem that focuses on each group ends up

being tractable to approximate. Picking the best of the solutions from the dynamic assortment

problems for different groups, the authors get a solution whose expected revenue deviates from

the optimal by at most a factor of O(log n). In Appendix H, we show that if we have interval

consideration sets, then we can use the idea in Aouad, Levi and Segev (2015) to group the customer

types into O(log n) groups, in which case, we can approximate the assortment problem that focuses

on each group by using nested consideration sets. So, we can use our FPTAS to approximate the

assortment problem for each group. Running our FPTAS O(n) times, we get a solution whose

expected revenue deviates from the optimal by at most a factor of O(log n). Furthermore, letting

p be the ratio between the largest and smallest product revenues, under the assumption that the

consideration sets are intervals of the form {k, . . . , j} and the products are indexed in the order of

increasing revenues, Aouad, Levi and Segev (2015) also get a solution for the dynamic assortment

problem whose expected revenue deviates from the optimal by at most a factor of O(log log p). If

we have interval consideration sets and the products are indexed in the order of increasing revenues,

then we can use a similar approach to obtain a solution for our assortment problem whose expected

22

revenue deviates from the optimal by at most a factor ofO(log log p). Nevertheless, these approaches

do not provide an expected revenue arbitrarily close to the optimal. Therefore, giving an FPTAS

for the assortment problem under interval consideration sets is one research direction.

Lastly, the running time of our FPTAS depends on Rmax, Vmax and λmin. An interesting

question is whether one can come up with a strongly polynomial time algorithm, whose running

time does not depend on these quantities.

Acknowledgements. We thank the associate editor and two anonymous referees whose

comments improved our paper substantially and unified our results.

Author Bios. Jacob B. Feldman is an assistant professor at Olin Business School at Washington

University in St. Louis. His research interests include customer choice modeling and approximation

algorithms. Huseyin Topaloglu is a professor at the School of Operations Research and

Information Engineering at Cornell Tech. His research interests include revenue management and

pricing.

References

Aouad, A., Farias, V. and Levi, R. (2016), Assortment optimization under consider-then-choose
choice models, Technical report, MIT, Massachusetts, MA.

Aouad, A., Farias, V., Levi, R. and Segev, D. (2015), The approximability of assortment
optimization under ranking preferences, Technical report, MIT, Cambridge, MA.

Aouad, A., Levi, R. and Segev, D. (2015), Approximation algorithms for dynamic assortment
optimization models, Technical report, MIT, Massachusetts, MA.

Bront, J. J. M., Diaz, I. M. and Vulcano, G. (2009), ‘A column generation algorithm for choice-based
network revenue management’, Oper. Res. 57(3), 769–784.

Chong, J.-K., Ho, T.-H. and Tang, C. S. (2001), ‘A modeling framework for category assortment
planning’, M&SOM 3(3), 191–210.

Dai, J., Ding, W., Kleywegt, A. J., Wang, X. and Zhang, Y. (2014), Choice based revenue
management for parallel flights, Technical report, Georgia Tech, Atlanta, GA.

Desir, A. and Goyal, V. (2014), Near-optimal algorithms for capacity constrained assortment
optimization, Technical report, Columbia University, New York, NY.

Gallego, G., Iyengar, G., Phillips, R. and Dubey, A. (2004), Managing flexible products on a
network, Technical report, Columbia University, New York, NY.

Gallego, G., Li, A., Truong, V.-A. and Wang, X. (2016), Online personalized resource allocation
with customer choice, Technical report, Columbia University, New York, NY.

Garey, M. and Johnson, D. (1979), Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, New York, NY.

Goyal, V., Levi, R. and Segev, D. (2016), ‘Near-optimal algorithms for the assortment planning
problem under dynamic substitution and stochastic demand’, Oper. Res. 64(1), 219–235.

Jagabathula, S. and Rusmevichientong, P. (2015), A nonparametric joint assortment and price
choice model, Technical report, New York University, New York, NY.

Jagabathula, S. and Vulcano, G. (2015), A model to estimate individual preferences using panel
data, Technical report, New York University, New York, NY.

Kok, A. G. and Fisher, M. L. (2007), ‘Demand estimation and assortment optimization under
substitution: Methodology and application’, Oper. Res. 55(6), 1001–10021.

Kunnumkal, S. and Talluri, K. (2014), On the tractability of the piecewise-linear approximation

23

for general discrete-choice network revenue management, Technical report, Universitat Pompeu
Fabra, Barcelona, Spain.

McFadden, D. and Train, K. (2000), ‘Mixed MNL models for discrete response’, Journal of Applied
Economics 15, 447–470.

Meissner, J., Strauss, A. and Talluri, K. (2012), ‘An enhanced concave program relaxation for
choice network revenue management’, Production and Operations Management 22(1), 71–87.

Misra, K. (2008), Understanding retail assortments in competitive markets, Technical report,
Northwestern University, Evanston, IL.

Rusmevichientong, P., Shmoys, D. B., Tong, C. and Topaloglu, H. (2014), ‘Assortment optimization
under the multinomial logit model with random choice parameters’, POM 23(11), 2023–2039.

Sahin, O. and Wang, R. (2014), The impact of consumer search cost on assortment planning and
pricing, Technical report, Johns Hopkins University, Baltimore, MD.

Stauss, A. K. and Talluri, K. (2016), Tractable consideration set structures for network revenue
management, Technical report, Imperial College, London, UK.

Talluri, K. (2011), A randomized concave programming method for choice network revenue
management, Technical report, Universitat Pompeu Fabra, Barcelona, Spain.

Talluri, K. and van Ryzin, G. (2004), ‘Revenue management under a general discrete choice model
of consumer behavior’, Management Sci. 50(1), 15–33.

Vulcano, G., van Ryzin, G. and Chaar, W. (2010), ‘OM practice – Choice-based revenue
management: An empirical study of estimation and optimization’, M&SOM 12(3), 371–392.

24

