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Abstract

We consider assortment problems under a mixture of multinomial logit models. There is a fixed
revenue associated with each product. There are multiple customer types. Customers of different
types choose according to different multinomial logit models whose parameters depend on the
type of the customer. The goal is to find a set of products to offer so as to maximize the expected
revenue obtained over all customer types. This assortment problem under the multinomial logit
model with multiple customer types is NP-complete. Although there are heuristics to find good
assortments, it is difficult to verify the optimality gap of the heuristics. In this paper, motivated
by the difficulty of finding optimal solutions and verifying the optimality gap of heuristics,
we develop an approach to construct an upper bound on the optimal expected revenue. Our
approach can quickly provide upper bounds and these upper bounds can be quite tight. In
our computational experiments, over a large set of randomly generated problem instances, the
upper bounds provided by our approach deviate from the optimal expected revenues by 0.15%
on average and by less than one percent in the worst case. By using our upper bounds, we are
able to verify the optimality gaps of a greedy heuristic accurately, even when optimal solutions
are not available.
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Customer choice models are becoming increasingly popular for modeling demand in modern revenue

management systems. In particular, traditional models of demand assume that each customer

arrives into the system with the intention of purchasing a fixed product. If this product is available

for purchase, then the customer makes a purchase. Otherwise, the customer simply leaves the

system. However, modern revenue management systems are able to offer a variety of products to

customers, possibly by exploiting the availability of online sales channels. Often times, there are

multiple offered products that satisfy the needs of a customer, in which case, the customer makes a

choice among the offered products. Due to the choice process, the demand for a particular product

depends on what other products are offered. Thus, customer choice models emerge as a useful tool

for capturing the dependencies between the demands for the offered products.

In this paper, we study assortment problems that capture the customer choice process of the

kind mentioned above. In our problem setting, a firm wants to find a set of products to offer to its

customers. There is a fixed revenue associated with each product. An arriving customer may be

one of multiple customer types. The firm does not known the type of an arriving customer, but it

has access to the probability that an arriving customer is of a particular type. Customers choose

among the offered products according to the multinomial logit model and customers of different

types choose according to different multinomial logit models whose parameters depend on the type

of the customer. This choice model is known as the mixture of multinomial logit models. The

goal of the firm is to find a set or an assortment of products to offer to its customers so as to

maximize the expected revenue obtained from each customer. Bront et al. (2009) show that this

assortment problem is NP-complete, give a mixed integer programming formulation to obtain the

optimal solution and provide computational experiments that demonstrate that a greedy heuristic

performs quite well when compared with the optimal solutions obtained through the mixed integer

programming formulation. One shortcoming of using a heuristic is that we use a heuristic simply

due to the fact that we cannot obtain the optimal solution and there is no immediate way of being

confident that the solution provided by a heuristic is actually a good one. In this paper, motivated

by the difficulty of obtaining optimal solutions and evaluating the quality of the solutions provided

by a heuristic, we develop a method to obtain upper bounds on the optimal expected revenue

in our assortment problem. Thus, we can check the gap between the expected revenue from the

solution provided by a heuristic and the upper bound on the optimal expected revenue to assess

the optimality gap of the heuristic.

Our method for obtaining an upper bound on the optimal expected revenue has two crucial

pieces. First, a natural approach for obtaining an upper bound on the optimal expected revenue

is to assume that the firm knows the type of an arriving customer. In this case, we can focus on

each customer type one by one and separately find an assortment that maximizes the expected

revenue from each customer type. This approach essentially allows us to offer different assortments

of products to customers of different types, whereas our assortment problem requires that we find

a single assortment to offer to all customer types. Talluri and van Ryzin (2004) show that if we

focus on one customer type at a time, then the assortment that maximizes the expected revenue
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from a single customer type can be obtained efficiently. This idea provides an efficient approach for

obtaining an upper bound on the optimal expected revenue, but the upper bound provided by this

idea can be quite loose since the assortments that maximize the expected revenues from different

customer types can be drastically different from each other. To overcome this shortcoming, we still

focus on each customer type one by one, but use penalty parameters to penalize a product that

appears in the assortment offered to one customer type but does not appear in the assortment

offered to another customer type. In this way, our goal is to synchronize the assortments offered

to different customer types. We choose the penalty parameters from a certain set that ensures that

we continue obtaining an upper bound on the optimal expected revenue even if we penalize the

presence or absence of the products in the assortments offered to different customer types. We

show that we can choose a good set of penalty parameters by solving a convex program.

Second, as we focus on each customer type one by one and use penalty parameters to penalize

the presence or absence of the products, we obtain assortment problems with a single customer

type, but the penalty parameters play the role of a fixed cost for offering a product. Kunnumkal

et al. (2009) show that if customers choose according to the multinomial logit model, then the

assortment problem with a fixed cost for offering a product is NP-complete, even when there is a

single customer type. To deal with this difficulty, we develop a new approximation to the assortment

problem with a single customer type and a fixed cost for offering a product. Our approximation is

based on the assumption that the probability that a customer leaves without making a purchase

can take on values over a prespecified grid. We design the grid so that we continue obtaining an

upper bound on the optimal expected revenue. Denser grid points provide a tighter upper bound

at the expense of larger computational effort. We give guidelines for choosing a good set of grid

points to balance the tightness of the upper bound with the computational effort.

To our knowledge, our approach is a unique practical method to check the quality of

solutions in assortment problems under a mixture of multinomial logit models. Computational

experiments indicate that our approach can obtain quite tight upper bounds on the optimal

expected revenues. We consider a large set of problem instances with large numbers of products

so that we cannot obtain the optimal solutions in a reasonable amount of run time. In more than

98% of the problem instances, the upper bounds from our approach are within 0.5% of the optimal

expected revenues. On average, the upper bounds from our approach deviate from the optimal

expected revenues by 0.15%. In the process, we support the findings of Bront et al. (2009) on

large problem instances for which we cannot compute the optimal solutions and demonstrate that

the optimality gaps of the greedy heuristic are within a fraction of a percent. Without tight upper

bounds on the optimal expected revenues, it would not be possible to obtain such an accurate

characterization of the optimality gaps of the greedy heuristic.

There are three papers that particularly motivated us to construct upper bounds when

customers choose according to a mixture of multinomial logit models. First, McFadden and Train

(2000) show that a mixture of multinomial logit models can approximate any random utility choice
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model, where a customer associates random utilities with the products, choosing the product with

the largest utility. This result holds irrespective of the joint distribution of the random utilities. So,

a mixture of multinomial logit models is a powerful choice model and solving assortment problems

under this choice model can have direct implications on solving assortment problems under arbitrary

random utility choice models. Second, Talluri (2011) considers assortment problems under a

mixture of multinomial logit models, but he focuses on a network revenue management setting. The

author computes an upper bound on the optimal expected revenue by preallocating the available

capacity to different customer types and his approach turns out to be equivalent to assuming that

the firm knows the type of an arriving customer, so that the firm can offer different assortments to

customers of different types. He does not use any penalty parameters to harmonize the assortments

offered to different customer types. In our assortment problems, this approach can yield quite poor

upper bounds and we see a need to improve this approach. The gap between the upper bounds

provided by this approach and the optimal expected revenues can exceed 14%.

Finally, as mentioned above, Bront et al. (2009) show that the assortment problem under

a mixture of multinomial logit models can be formulated as a mixed integer program. They

demonstrate that a greedy heuristic performs quite well when compared with the optimal solutions

obtained by the mixed integer program. It is difficult to evaluate the optimality gap of the greedy

heuristic for large problem instances and a good upper bound on the optimal expected revenue

becomes useful in this regard. Furthermore, a tempting approach to obtain an upper bound on

the optimal expected revenue is to solve the linear programming relaxation of their mixed integer

program, but we establish that the upper bound from this linear programming relaxation can be

as poor as focusing on each customer type one by one without using any penalty parameters. In

other words, the upper bound from the linear programming relaxation can correspond to the upper

bound from the approach in Talluri (2011).

To sum up, we make the following contributions in this paper. 1) We develop a new approach to

obtain an upper bound on the optimal expected revenue in assortment problems under a mixture of

multinomial logit models. Our approach finds an assortment that maximizes the expected revenue

from each customer type, but we use penalty parameters to synchronize the assortments offered to

different customer types. This strategy requires solving assortment problems with a single customer

type, but with a fixed cost for offering a product. We show how to approximate such assortment

problems by assuming that the probability that a customer leaves without making a purchase lies

on a prespecified grid. 2) We show how to choose a good set of penalty parameters by solving a

convex program. 3) We show how to choose a good set of grid points. Denser grid points yield

tighter upper bounds at the expense of larger computational effort, but we show that if we simply

use exponential grid points of the form {(1 + ρ)−k+1 : k = 1, 2, . . .} for some ρ > 0, then no other

set of grid points, no matter how dense it is, can improve the upper bound by more than a factor

of 1 + ρ. 4) We show that the linear programming relaxation of the mixed integer program given

by Bront et al. (2009) can be as loose as the upper bound obtained under the assumption that

the firm knows the type of an arriving customer. 5) Our approach for obtaining an upper bound
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on the optimal expected revenue is flexible enough that we can extend it to the case where there

is a constraint on the total space consumption of the offered products or where customers choose

according to a mixture of nested logit models. We show how to make such extensions.

The paper is organized as follows. In Section 1, we review the related literature. In Section 2,

we formulate the assortment problem under a mixture of multinomial logit models and we present

our approach for obtaining an upper bound, which is based on offering different assortments to

different customer types, but uses penalty parameters to synchronize the assortments offered to

different customer types. In this way, we obtain assortment problems with a single customer

type but with a fixed cost for offering a product. In Section 3, we show how to approximate

such assortment problems by assuming that the probability of not making a purchase lies on a

prespecified grid. In Section 4, we show how to choose a good set of penalty parameters. In Section

5, we show how to choose a good set of grid points. In Section 6, we relate our approach for obtaining

upper bounds to a Lagrangian relaxation strategy on an appropriate formulation of our assortment

problem. This development requires more notational overhead than the path we follow. So, we defer

this development towards the end of the paper. Since our approach can be cast as a Lagrangian

relaxation strategy for a nonconvex program, it is difficult to get theoretical tightness guarantees

for our upper bounds and there are pathological problem instances that suffer from a large duality

gap. In Section 7, we make extensions to the case where there is a constraint on the total space

consumption of the offered products or where customers choose according to a mixture of nested

logit models. In Section 8, we give computational experiments on both large problem instances

and small problem instances with a special structure. In Section 9, we conclude.

1 Literature Review

Our work is related to assortment problems under the multinomial logit model. Gallego et al.

(2004) and Talluri and van Ryzin (2004) consider assortment problems under the multinomial

logit model with a single customer type and show that the optimal assortment can be obtained

efficiently by focusing on assortments that include a certain number of products with the largest

revenues. Bront et al. (2009) and Mendez-Diaz et al. (2010) consider the assortment problem under

a mixture of multinomial logit models. They show that the problem is NP-complete, give a mixed

integer programming formulation of the problem, present valid cuts to tighten this formulation

and experiment with a greedy heuristic. Rusmevichientong et al. (2010) consider the assortment

problem when there is a constraint on the number of products that can be offered and show that

the optimal assortment can be found efficiently when there is a single customer type. Jagabathula

et al. (2011) consider simple heuristics for assortment problems and show that these heuristics obtain

the optimal assortment under the multinomial logit model with a single customer type. Gallego

et al. (2011) and Wang (2013) study assortment problems under the multinomial logit model,

where customers become more likely to leave without a purchase when the offered assortment lacks

variety. Davis et al. (2013) give linear programming formulations for assortment problems with
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constraints on the offered assortment, when customers choose according to the multinomial logit

model with a single customer type. Rusmevichientong et al. (2013) consider the assortment problem

under a mixture of multinomial logit models, show that the problem is NP-complete even when there

are two customer types and give performance guarantees for a certain class of assortments. Desir and

Goyal (2013) give approximation schemes for various assortment problems. These approximation

schemes can get cumbersome when the number of customer types is large.

There is assortment optimization work under other choice models. Davis et al. (2014), Li and

Rusmevichientong (2012), Gallego and Topaloglu (2012) and Li et al. (2013) consider assortment

problems when customers choose according a nested logit model with a single customer type and

show that the problem is tractable. Farias et al. (2013) consider a choice model where each customer

arrives with a particular ordering of products in mind and purchases the first product in the ordering

that is offered. They focus on estimating the parameters of the choice model in a way consistent

with observed sales data. Blanchet et al. (2013) consider a choice model, where if a customer finds

that the product he is interested in is not available, then he makes a transition to another product

according to a Markov chain and considers purchasing the other product, until he reaches a product

that is available or reaches the option of leaving without purchasing anything. The authors show

that the assortment problem is tractable under this choice model.

There is related literature on network revenue management models incorporating customer

choice behavior. In this setting, an airline sells itinerary products over a flight network. Customers

arriving into the system choose among the offered itineraries and the goal is to dynamically adjust

the set of available itineraries over time so as to maximize the expected revenue obtained over the

selling horizon. A common approach for such network revenue management problems is to formulate

deterministic linear programming approximations. Examples of such approximations can be found

in Gallego et al. (2004), Liu and van Ryzin (2008), Zhang and Adelman (2009), Kunnumkal and

Topaloglu (2008), Meissner et al. (2012), Kunnumkal and Talluri (2012) and Vossen and Zhang

(2013). Usually, the decision variables in these approximations correspond to the number of time

periods during which a particular subset of itineraries is made available. Since there is one decision

variable for each subset of itineraries, the number of decision variables can be large and it is common

to solve the approximations by using column generation. The column generation subproblems in

this setting precisely correspond to the assortment problem that we consider in this paper when

customers choose according to a mixture of multinomial logit models.

Although McFadden and Train (2000) do not focus on solving assortment problems, their work

demonstrates that a mixture of multinomial logit models is a powerful choice model as it can

accurately approximate any choice model that is based on random utility maximization. Vulcano

et al. (2012) consider the problem of estimating the parameters of the multinomial logit model with

a single customer type from sales data. Kleywegt and Wang (2013) estimate the parameters of a

mixture of multinomial logit models from sales data and they focus on the case where the sets of

products offered to customers are not observable.
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2 Problem Formulation and Decomposition Approach

We use N to denote the set of possible products that we can offer to customers. The revenue

associated with product j is rj . We use G to denote the set of customer types. The probability

that a customer of type g arrives into the system is αg, where we have
∑

g∈G αg = 1. We use

the vector x = {xj : i ∈ N} ∈ {0, 1}|N | to capture the set of products that we offer to the

customers, where we have xj = 1 if product j is offered, otherwise we have xj = 0. A customer

of a certain type makes a choice among the offered products according to the multinomial logit

model whose parameters depend on the type of the customer. In particular, a customer of type

g associates the preference weight vgj with product j. For all customer types, we normalize the

preference weight of the no purchase option to one. In this case, if the set of products that we

offer to the customers is captured by the vector x, then a customer of type g purchases product

j with probability P g
j (x) = vgj xj/(1 +

∑
i∈N vgi xi). Thus, if the set of products that we offer to

the customers is captured by the vector x, then the expected revenue obtained from a customer is

given by
∑

g∈G αg
∑

j∈N rj P
g
j (x). Noting the definition of P g

j (x), we can find the set of products

that maximizes the expected revenue obtained from a customer by solving the problem

Z∗ = max
x∈{0,1}|N|

{∑
g∈G

αg

∑
j∈N rj v

g
j xj

1 +
∑

j∈N vgj xj

}
. (1)

In the problem above, the fraction computes the expected revenue obtained from a customer of

type g as a function of the set of products that we offer, whereas the outer sum computes the

expected revenue over all customer types. It is likely that obtaining exact solutions to problem (1)

is difficult. In particular, Bront et al. (2009) show that the problem above is NP-complete. Motivated

by this complexity result, we focus on obtaining an upper bound on the optimal expected revenue

Z∗, given by the optimal objective value of problem (1).

A natural approach for obtaining an upper bound on the optimal expected revenue Z∗ is to

proceed under the assumption that we can offer different sets of products to different customer types,

but use penalty parameters to penalize the absence or presence of the products in the assortments

offered to different customer types. To pursue this reasoning, we use λ = {λg
j : j ∈ N, g ∈ G} ∈

ℜ|N |×|G| to denote a vector of penalty parameters. As a function of the penalty parameters, we

define Πg(λ) as the optimal objective value of the problem

Πg(λ) = max
x∈{0,1}|N|

{ ∑
j∈N rj v

g
j xj

1 +
∑

j∈N vgj xj
−

∑
j∈N

λg
j xj

}
. (2)

The problem above finds a set of products to offer so as to maximize the expected profit obtained

from a customer of type g, where we generate a revenue of rj when we sell product j and incur a

cost of λg
j when we offer product j. The next lemma shows that

∑
g∈G αg Πg(λ) provides an upper

bound on the optimal expected revenue Z∗, as long as the penalty parameters take values in the

set Λ = {λ ∈ ℜ|N |×|G| :
∑

g∈G αg λg
j = 0 ∀ j ∈ N}. The proof is rather simple, but we include the

proof to explicitly show the necessity of imposing the condition λ ∈ Λ.
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Lemma 1 For any λ ∈ Λ, we have
∑

g∈G αg Πg(λ) ≥ Z∗.

Proof. Letting x∗ be an optimal solution to problem (1), we observe that x∗ is a feasible, but not

necessarily an optimal solution to problem (2), in which case, we obtain

∑
g∈G

αg Πg(λ) ≥
∑
g∈G

αg

{ ∑
j∈N rj v

g
j x

∗
j

1 +
∑

j∈N vgj x
∗
j

−
∑
j∈N

λg
j x

∗
j

}

=
∑
g∈G

αg

∑
j∈N rj v

g
j x

∗
j

1 +
∑

j∈N vgj x
∗
j

−
∑
j∈N

{∑
g∈G

αg λg
j

}
x∗j = Z∗,

where the last equality follows from the definition of x∗ and the fact that the penalty parameters

satisfy λ ∈ Λ so that we have
∑

g∈G αg λg
j = 0 for all j ∈ N . �

The penalty parameters can be positive or negative, where a positive value for λg
j discourages

offering product j to a customer of type g, whereas a negative value for λg
j encourages offering

product j to a customer of type g. Since the zero vector 0̄ ∈ ℜ|N |×|G| is in Λ, Lemma 1 implies

that
∑

g∈G αg Πg(0̄) provides an upper bound on the optimal expected revenue Z∗ and this upper

bound corresponds to the one obtained by offering different sets of products to different customer

types without using any penalty parameters. In general, using penalty parameters other than zero

can potentially yield tighter upper bounds and our computational experiments indicate that the

benefits from using penalty parameters other than zero can be substantial.

Noting that we can use
∑

g∈G αg Πg(λ) for any λ ∈ Λ as an upper bound on the optimal expected

revenue Z∗, we can try to solve the problem minλ∈Λ
∑

g∈G αg Πg(λ) to obtain the tightest possible

upper bound, but solving the last optimization problem is intractable. In particular, computing

Πg(λ) at any λ requires solving problem (2). Problem (2) maximizes the expected profit from a

customer of type g, where we generate a revenue from each product we sell and incur a cost for each

product we offer. Kunnumkal et al. (2009) show that such an assortment optimization problem that

involves costs for offering the products is NP-complete. To overcome this difficulty, we develop an

approximation Πg(λ), while maintaining the upper bound provided by Lemma 1.

3 Upper Bound on Optimal Expected Revenue

At the end of the previous section, we propose solving the problem minλ∈Λ
∑

g∈G αg Πg(λ) to

obtain the tightest possible upper bound on the optimal expected revenue Z∗, but solving this

optimization problem turns out to be intractable. In this section, we develop an approximation

Π̃g(·) to Πg(·). This approximation is tractable to compute and it satisfies Π̃g(λ) ≥ Πg(λ) for

all λ ∈ Λ. In this case, by Lemma 1, we have
∑

g∈G αg Π̃g(λ) ≥
∑

g∈G αg Πg(λ) ≥ Z∗ for any

λ ∈ Λ, implying that we can use
∑

g∈G αg Π̃g(λ) for any λ ∈ Λ as an upper bound on the optimal

expected revenue Z∗. In this case, we can solve the problem minλ∈Λ
∑

g∈G αg Π̃g(λ) to obtain the

tightest possible upper bound on the optimal expected revenue provided by the approximations
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{Π̃g(·) : g ∈ G}. Solving problem minλ∈Λ
∑

g∈G αg Π̃g(λ) turns out to be tractable. To develop an

approximation to Πg(λ), we note that 1/(1 +
∑

j∈N vgj xj) in problem (2) is the probability that a

customer of type g does not purchase anything when the set of offered products is captured by the

vector x. We fix the value of this no purchase probability at p and solve the problem

max
x∈{0,1}|N|

{∑
j∈N

p rj v
g
j xj −

∑
j∈N

λg
j xj :

1

1 +
∑

j∈N vgj xj
= p

}

for a fixed value of p. In this case, it follows that if we solve the problem above for all values

of p in the interval [0, 1] and pick the largest optimal objective value over all values of p, then

we obtain the optimal objective value Πg(λ) of problem (2). We make a few refinements in this

approach. Since the smallest possible value of the no purchase probability for any customer type is

pmin = ming∈G{1/(1 +
∑

j∈N vgj )}, we can consider all possible values of p in the interval [pmin, 1],

rather than [0, 1]. Furthermore, we can replace the equality constraint in the problem above with

the corresponding greater than or equal to constraint 1/(1+
∑

j∈N vgj xj) ≥ p, since after replacing

the equality constraint with the greater than or equal to constraint, if the constraint ends up being

loose for any value of p, then we can increase the value of p until we make the constraint tight,

which would only increase the objective value of the problem. So, since we want to find the value

of p that makes the objective value of the problem above as large as possible, the values of p that

render the constraint loose are not relevant to us. Thus, writing the objective function of the

problem above as
∑

j∈N (p rj v
g
j − λg

j )xj and noting that the constraint 1/(1 +
∑

j∈N vgj xj) ≥ p is

equivalent to
∑

j∈N vgj xj ≤ 1/p− 1, the discussion above implies that if we solve the problem

max
x∈{0,1}|N|

{∑
j∈N

(p rj v
g
j − λg

j )xj :
∑
j∈N

vgj xj ≤
1

p
− 1

}
(3)

for all values of p in the interval [pmin, 1] and pick the largest optimal objective value over all values

of p, then we obtain the optimal objective value Πg(λ) of problem (2). To develop an approximation

to Πg(λ), we focus on the values of p over a set of grid points, while ensuring that our approximation

is an upper bound on Πg(λ) even though we focus only on the grid points.

To develop an approximation to Πg(λ), consider problem (3) for some p ∈ [pmin, 1]. If we replace

the value of p in the objective function with a larger value and the value of p in the constraint with a

smaller value, then the optimal objective value of problem (3) gets larger. For any pL, pU ∈ [pmin, 1]

with pL ≤ pU , we define Πg(λ, pL, pU ) as the optimal objective value of the problem

Πg(λ, pL, pU ) = max
x∈[0,1]|N|

{∑
j∈N

(pU rj v
g
j − λg

j )xj :
∑
j∈N

vgj xj ≤
1

pL
− 1

}
. (4)

We observe that problem (4) is a continuous knapsack problem, where the capacity of the knapsack

is 1/pL − 1, the utility of item j is pU rj v
g
j − λg

j and the space consumption of item j is vgj . As

mentioned above, for any p ∈ [pL, pU ], comparing problems (3) and (4), we observe that the

objective function coefficients and the right side of the constraint in problem (4) are larger than
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those in problem (3). Furthermore, problem (4) does not impose integrality constraints on the

decision variables. Thus, the optimal objective value of problem (4) is larger than that of problem

(3). To develop an approximation on Πg(λ) while making sure that our approximation is an upper

bound on Πg(λ), we consider an arbitrary set of grid points {pk : k = 1, . . . ,K + 1} that satisfy

pmin = p1 ≤ p2 ≤ . . . ≤ pK ≤ pK+1 = 1. Focusing only on this set of grid points, we solve

problem (4) for all values of pL, pU with pL = pk and pU = pk+1 for all k = 1, . . . ,K. The next

proposition shows that picking the largest optimal objective value of problem (4) over all values of

pL, pU provides an upper bound on Πg(λ).

Proposition 2 For any λ ∈ Λ, we have

max
k∈{1,...,K}

{
Πg(λ, pk, pk+1)

}
≥ Πg(λ).

Proof. We fix some λ ∈ Λ. We show that there exists k ∈ {1, . . . ,K} such that Πg(λ, pk, pk+1) ≥
Πg(λ) and this inequality establishes the desired result. Letting x∗ be an optimal solution to

problem (2), we define p∗ as p∗ = 1/(1+
∑

j∈N vgj x
∗
j ) and choose k such that p∗ ∈ [pk, pk+1]. Since

p∗ ≥ pk, we have
∑

j∈N vgj x
∗
j = 1/p∗ − 1 ≤ 1/pk − 1, which implies that the solution x∗ is feasible

to problem (4), when this problem is solved with pL = pk and pU = pk+1. Thus, using the fact

that p∗ ≤ pk+1, we obtain Πg(λ) =
∑

j∈N p∗ rj v
g
j x

∗
j −

∑
j∈N λg

j x
∗
j ≤

∑
j∈N (pk+1 rj v

g
j − λg

j )x
∗
j ≤

Πg(λ, pk, pk+1), where the first inequality is by p∗ ≤ pk+1 and the second inequality is by the fact

that the solution x∗ is feasible to problem (4) when solved with pL = pk and pU = pk+1. �

Proposition 2 implies that if we let Π̃g(λ) = maxk∈{1,...,K}{Πg(λ, pk, pk+1)} and use Π̃g(λ)

as an approximation to Πg(λ), then this approximation is an upper bound on Πg(λ). We note

that Proposition 2 holds for any set of grid points {pk : k = 1, . . . ,K + 1}. In other words,

we have maxk∈{1,...,K}{Πg(λ, pk, pk+1)} ≥ Πg(λ) irrespective of the placement and number of grid

points. Also, we observe that computing Π̃g(λ) for any λ ∈ Λ requires solving K continuous

knapsack problems. Each knapsack problem can be solved by ordering the items according to their

utility to space consumption ratios and filling the knapsack starting from the item with the largest

utility to space consumption ratio. Therefore, we can compute maxk∈{1,...,K}{Πg(λ, pk, pk+1)} for

any λ ∈ Λ quickly as long as the number of grid points is not too large. In Section 5, we dwell on

the question of how to choose a reasonable set of grid points.

There are two sources of error when we use Π̃g(λ) = maxk∈{1,...,K}{Πg(λ, pk, pk+1)} as an

approximation to Πg(λ). First, the approximation Π̃g(λ) is obtained by solving problem (4) by using

the set of grid points {pk : k = 1, . . . ,K+1}, whereas Πg(λ) is obtained by solving problem (3) for all

p ∈ [pmin, 1]. Intuitively speaking, if the set of grid points is dense, then we expect the discrepancy

due to focusing only on the grid points not to be large. This observation also indicates that by

choosing a denser set of grid points, we can obtain better approximations to Πg(λ). Second, problem

(3) imposes integrality constraints on the decision variables, whereas problem (4) does not. Our

expectation is that the continuous relaxation of a knapsack problem provides good approximations

10



to the original one and the discrepancy due to relaxing the integrality constraints is not large. It is

indeed possible to formulate a continuous knapsack problem whose optimal objective value deviates

from the original binary one at most by a factor of two, but the deviation tends to be much less in

practice; see Williamson and Shmoys (2011).

4 Choosing Penalty Parameters

At the end of Section 2, we propose solving the problem minλ∈Λ
∑

g∈G αg Πg(λ) to obtain an upper

bound on the optimal expected revenue Z∗, but solving this optimization problem is intractable. To

overcome this difficulty, we propose using maxk∈{1,...,K}Π
g(λ, pk, pk+1) as an approximation to

Πg(λ) and solving the problem

min
λ∈Λ

{∑
g∈G

αg max
k∈{1,...,K}

{
Πg(λ, pk, pk+1)

}}
. (5)

Noting that maxk∈{1,...,K}{Πg(λ, pk, pk+1)} ≥ Πg(λ) for any λ ∈ Λ by Proposition 2 and

minλ∈Λ
∑

g∈G αg Πg(λ) ≥ Z∗ by Lemma 1, it follows that the optimal objective value of problem

(5) provides an upper bound on the optimal expected revenue Z∗. Also, it is worthwhile to note

that our notation in problem (5) suggests that the sets of grid points {pk : k = 1, . . . ,K + 1}
that we use for different customer types are the same, but it does not have to be the case and

we can use different sets of grid points for different customer types. In this section, we show

that maxk∈{1,...,K}Π
g(λ, pk, pk+1) is a convex function of λ, in which case, the objective function

of the minimization problem in (5) is convex. Furthermore, we show how to obtain subgradients

of maxk∈{1,...,K}Π
g(·, pk, pk+1). Since the condition λ ∈ Λ enforces a set of linear constraints on

the penalty parameters, these results indicate that we can solve problem (5) by using subgradient

search for minimizing a convex function subject to linear constraints; see Ruszczynski (2006).

It is not difficult to see that maxk∈{1,...,K}Π
g(λ, pk, pk+1) is convex in λ. When we view

Πg(λ, pk, pk+1) as a function of λ, it corresponds to the optimal objective value of the linear program

in (4) as a function of its objective function coefficients. Thus, it follows from linear programming

theory that Πg(λ, pk, pk+1) is convex in λ. Since the pointwise maximum of convex functions is also

convex, it follows that maxk∈{1,...,K}Π
g(λ, pk, pk+1) is convex in λ, as desired.

To show how to obtain subgradients of maxk∈{1,...,K}Π
g(·, pk, pk+1), we let Π̃g(λ) =

maxk∈{1,...,K}Π
g(λ, pk, pk+1). To compute a subgradient of Π̃g(·) at some λ̂ ∈ ℜ|N |×|G|, we solve

problem (4) with λ = λ̂ and pL = pk, pU = pk+1 for all k = 1, . . . ,K. We let k∗ ∈ {1, . . . ,K} be

such that we obtain the largest optimal objective value for problem (4) when we solve this problem

with pL = pk
∗
and pU = pk

∗+1. In other words, we have Π̃g(λ̂) = Πg(λ̂, pk
∗
, pk

∗+1). Furthermore,

we let x∗ be an optimal solution to problem (4) when we solve this problem with λ = λ̂, pL = pk
∗

and pU = pk
∗+1, in which case, we get

∑
j∈N (pk

∗+1 rj v
g
j − λ̂g

j )x
∗
j = Πg(λ̂, pk

∗
, pk

∗+1) = Π̃g(λ̂) as

well. On the other hand, at any arbitrary λ, we have Π̃g(λ) ≥ Πg(λ, pk
∗
, pk

∗+1) by the definition

of Π̃g(·). Also, when we solve problem (4) with an arbitrary value of λ but with pL = pk
∗
and
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pU = pk
∗+1, the solution x∗ is feasible but not necessarily optimal to problem (4) and we obtain∑

j∈N (pk
∗+1 rj v

g
j − λg

j )x
∗
j ≤ Πg(λ, pk

∗
, pk

∗+1) ≤ Π̃g(λ). If we subtract this chain of inequalities

from the equality
∑

j∈N (pk
∗+1 rj v

g
j − λ̂g

j )x
∗
j = Π̃g(λ̂) obtained above, then we get

Π̃g(λ) ≥ Π̃g(λ̂)−
∑
j∈N

x∗j (λ
g
j − λ̂g

j ).

The expression above indicates that Π̃g(·) satisfies the subgradient inequality at the point λ̂ with

the subgradient D(λ̂) = {Dc
j(λ̂) : j ∈ N, c ∈ G} ∈ ℜ|N |×|G| given by Dc

j(λ̂) = −x∗j if c = g and

Dc
j(λ̂) = 0 if c ∈ G \ {g}. To sum up, if we want to compute a subgradient of Π̃g(·) at the point

λ̂, then we solve problem (4) with λ = λ̂ and pL = pk, pU = pk+1 for all k = 1, . . . ,K. We let

k∗ ∈ {1, . . . ,K} be such that we obtain the largest optimal objective value for problem (4) when we

solve this problem with pL = pk
∗
and pU = pk

∗+1. Finally, using x∗ to denote an optimal solution

to problem (4) when this problem is solved with λ = λ̂, pL = pk
∗
and pU = pk

∗+1, D(λ̂) as defined

above provides a subgradient of Π̃g(·) at λ̂.

5 Effective Grid Points

The optimal objective value of problem (5) provides an upper bound on the optimal expected

revenue Z∗ for any choice of the grid points {pk : k = 1, . . . ,K +1}. By the discussion that follows

Proposition 2, we can obtain tighter upper bounds by using a denser set of grid points, but the

computational effort to solve problem (5) increases with a denser set of grid points. To provide

some guideline into the choice of the grid points, in this section, we explore the performance of

exponential grid points. In particular, for fixed ρ > 0, we focus on the set of exponential grid points

{(1 + ρ)−k+1 : k = 1, . . . ,K + 1}, where K is large enough that (1 + ρ)−K ≤ pmin < (1 + ρ)−K+1,

in which case, these grid points cover the interval [pmin, 1].

In this section, we show that if we compute an upper bound on the optimal expected revenue Z∗

by using the set of exponential grid points {(1+ρ)−k+1 : k = 1, . . . ,K+1} in problem (5), then no

other set of grid points, irrespective of how dense the set of grid points is, can improve this upper

bound by more than a factor of 1+ρ. In other words, if we use Z̄exp
ρ to denote the optimal objective

value of problem (5) when we use the set of exponential grid points {(1+ρ)−k+1 : k = 1, . . . ,K+1}
in this problem and Z̄arb to denote the optimal objective value of problem (5) with any arbitrary

set of grid points, then it always holds that Z̄exp
ρ ≤ (1 + ρ) Z̄arb. Therefore, when we use the set of

exponential grid points to obtain an upper bound, we can a priori be sure that it is not possible to

improve this upper bound by more than a factor of 1 + ρ by using a denser set of grid points. This

result, in a sense, gives a performance guarantee for the set of exponential grid points. Furthermore,

since the set of exponential grid points is denser to the left side of the interval [pmin, 1] and less

dense to the right, this result builds the intuition that it is beneficial to use denser grid points when

approximating smaller values of the no purchase probability. The next proposition becomes useful

when showing the effectiveness of exponential grid points.
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Proposition 3 Let {(1 + ρ)−k+1 : k = 1, . . . ,K + 1} be a set of exponential grid points for some

ρ > 0 and {pl : l = 1, . . . , L+ 1} be an arbitrary set of grid points with p1 ≤ p2 ≤ . . . ≤ pL+1, both

covering the interval [pmin, 1]. For any g ∈ G and λ ∈ Λ, we have

max
k∈{1,...,K}

{
Πg((1 + ρ)λ, (1 + ρ)−k, (1 + ρ)−k+1)

}
≤ (1 + ρ) max

l∈{1,...,L}

{
Πg(λ, pl, pl+1)

}
. (6)

Proof. We let k∗ ∈ {1, . . . ,K} be the value of k that attains the maximum on the left side of

the inequality in (6). Also, we let l∗ ∈ {1, . . . , L} be such that pl
∗ ≤ (1 + ρ)−k∗ < pl

∗+1. Finally,

we let x∗ be an optimal solution to problem (4) when we solve this problem after replacing λ

with (1 + ρ)λ and with pL = (1 + ρ)−k∗ , pU = (1 + ρ)−k∗+1. Since pl
∗ ≤ (1 + ρ)−k∗ , we have

1/pl
∗ − 1 ≥ 1/(1 + ρ)−k∗ − 1, implying that x∗ is a feasible solution to problem (4) when we solve

this problem with pL = pl
∗
, pU = pl

∗+1. Using the definition of x∗, we have

Πg((1 + ρ)λ, (1 + ρ)−k∗ , (1 + ρ)−k∗+1) =
∑
j∈N

((1 + ρ)−k∗+1 rj v
g
j − (1 + ρ)λg

j )x
∗
j

≤ (1 + ρ)
∑
j∈N

(pl
∗+1 rj v

g
j − λg

j )x
∗
j ≤ (1 + ρ)Πg(λ, pl

∗
, pl

∗+1) ≤ (1 + ρ) max
l∈{1,...,L}

{
Πg(λ, pl, pl+1)

}
,

where the first inequality follows by (1 + ρ)−k∗ < pl
∗+1 and the second inequality holds since x∗ is

a feasible, but not necessarily an optimal solution to problem (4) when this problem is solved with

pL = pl
∗
, pU = pl

∗+1. By the definition of k∗, the first expression in the chain of inequalities above

is equal to the expression on the left side of (6) and the desired result follows. �

The inequality in (6) holds for any g ∈ G and λ ∈ Λ, in which case, multiplying this inequality

by αg, adding over all g ∈ G and taking the minimum of both sides over all λ ∈ Λ, we get

min
λ∈Λ

{∑
g∈G

αg max
k∈{1,...,K}

{
Πg((1 + ρ)λ, (1 + ρ)−k, (1 + ρ)−k+1)

}}
≤

(1 + ρ) min
λ∈Λ

{∑
g∈G

αg max
l∈{1,...,L}

{
Πg(λ, pl, pl+1)

}}
.

By the definition of Λ, we have λ ∈ Λ if and only if (1 + ρ)λ ∈ Λ. So, the constraint in the

minimization problem on the left side above can be written as (1 + ρ)λ ∈ Λ. Thus, replacing all

occurrences of (1 + ρ)λ with λ through change of variables, we write the inequality above as

min
λ∈Λ

{∑
g∈G

αg max
k∈{1,...,K}

{
Πg(λ, (1 + ρ)−k, (1 + ρ)−k+1)

}}
≤

(1 + ρ) min
λ∈Λ

{∑
g∈G

αg max
l∈{1,...,L}

{
Πg(λ, pl, pl+1)

}}
.

We observe that the expression on the left side of the inequality above is the optimal objective

value of problem (5) when we use the set of exponential grid points {(1+ρ)−k+1 : k = 1, . . . ,K+1}
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in this problem, whereas the expression on the right side is the optimal objective value of problem

(5) when we use an arbitrary set of grid points {pl : l = 1, . . . , L + 1}. Therefore, the inequality

above shows that the upper bound on the optimal expected revenue obtained by using an arbitrary

set of grid points {pl : l = 1, . . . , L+ 1} in problem (5) cannot improve the upper bound obtained

by using the set of exponential grid points {(1 + ρ)−k+1 : k = 1, . . . ,K + 1} by more than a factor

of 1 + ρ, which is the desired result.

Since pmin < (1+ρ)−K+1, we haveK = O(log(pmin)/ log(1+ρ)). For example, if the no purchase

probability of a customer type is no smaller than 0.01 when we offer all of the products, then we

can set pmin = 0.01. If we want a performance guarantee of 0.1% by using a set of exponential grid

points, then we can choose ρ = 0.001, in which case, K comes out to be about 4600. When we

use this set of exponential grid points, no other set of grid points can improve the upper bound

provided by the optimal objective value of problem (5) by more than 0.1%.

6 Connection to Lagrangian Relaxation

Noting that Πg(λ) is the optimal objective value of problem (2), Lemma 1 indicates that if we have

λ ∈ Λ, then
∑

g∈G αg Πg(λ) provides an upper bound on the optimal expected revenue Z∗. In this

section, our goal is to show that this result can be motivated by using Lagrangian relaxation on an

appropriate reformulation of problem (1). For this purpose, we define the decision variable xgj such

that xgj = 1 if we offer product j to a customer of type g, otherwise we have xgj = 0. In this case,

we choose an arbitrary customer type ϕ and write problem (1) equivalently as

Z∗ = max
∑
g∈G

αg

∑
j∈N rj v

g
j x

g
j

1 +
∑

j∈N vgj x
g
j

(7)

subject to xgj = xϕj ∀ j ∈ N, g ∈ G \ {ϕ}

xgj ∈ {0, 1} ∀ j ∈ N, g ∈ G.

By the constraints above, we can replace the decision variables {xgj : g ∈ G} with a single decision

variable xϕj , in which case, the problem above becomes equivalent to problem (1). Relaxing the

constraints in problem (7) by associating the Lagrange multipliers {αgλg
j : j ∈ N, g ∈ G \ {ϕ}}

with them, the objective function of the problem above can be written as

∑
g∈G\{ϕ}

αg

{ ∑
j∈N rj v

g
j x

g
j

1 +
∑

j∈N vgj x
g
j

−
∑
j∈N

λg
j x

g
j

}
+ αϕ

{ ∑
j∈N rj v

ϕ
j x

ϕ
j

1 +
∑

j∈N vϕj x
ϕ
j

+
∑
j∈N

[ ∑
g∈G\{ϕ}

αg λg
j

αϕ

]
xϕj

}
. (8)

We use {αg : g ∈ G \ {ϕ}} to scale the Lagrange multipliers {αgλg
j : j ∈ N, g ∈ G \ {ϕ}}, as this

scaling ultimately allows us to draw parallels with our earlier development more easily. This scaling

is not a concern since if αg = 0 for some customer type g, then we can drop this customer type from

consideration. If we define the additional Lagrange multipliers {λϕ
j : j ∈ N} for the customer type

ϕ as λϕ
j = −

∑
g∈G\{ϕ} α

g λg
j/α

ϕ for all j ∈ N , then the coefficient of the decision variable xϕj in the

last sum in (8) is −λϕ
j . Also, noting that αϕ λϕ

j = −
∑

g∈G\{ϕ} α
g λg

j , we have
∑

g∈G αg λg
j = 0 for
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all j ∈ N , which implies that λ = {λg
j : j ∈ N, g ∈ G} satisfies λ ∈ Λ. In this case, noting that the

coefficient of the decision variable xϕj in the last sum in (8) is −λϕ
j , we can write (8) as

∑
g∈G

αg

{ ∑
j∈N rj v

g
j x

g
j

1 +
∑

j∈N vgj x
g
j

−
∑
j∈N

λg
j x

g
j

}
.

The discussion so far shows that relaxing the constraints in problem (7) by associating the Lagrange

multipliers {αg λg
j : j ∈ N, g ∈ G \ {ϕ}} with them is equivalent to solving the problem

max
∑
g∈G

αg

{ ∑
j∈N rj v

g
j x

g
j

1 +
∑

j∈N vgj x
g
j

−
∑
j∈N

λg
j x

g
j

}
(9)

subject to xgj ∈ {0, 1} ∀ j ∈ N, g ∈ G,

as long as λ ∈ Λ. Noting that problem (9) is obtained by relaxing the constraints in problem (7) by

associating the Lagrange multipliers {αg λg
j : j ∈ N, g ∈ G \ {ϕ}} with them, it is straightforward

to show that the optimal objective value of the problem above provides an upper bound on the

optimal objective value of problem (7), which is Z∗. We observe that problem (9) decomposes by

customer types and noting the definition of Πg(λ) in (2), the optimal objective value of problem

(9) is
∑

g∈G αg Πg(λ). Therefore, it follows that
∑

g∈G αg Πg(λ) provides an upper bound on the

optimal expected revenue Z∗ as long as λ satisfies λ ∈ Λ. This result corresponds to the one given

in Lemma 1, but as we show in this section, it is possible to reach this result by using Lagrangian

relaxation on an appropriate reformulation of problem (1).

7 Extensions to Constrained Problems and Other Choice Models

In this section, we discuss two extensions of our approach. First, we consider the case where each

product occupies a certain amount of space and the total space consumption of the offered products

cannot exceed a certain space limit. Second, we consider the case where customers choose according

to a mixture of nested logit models, rather than a mixture of multinomial logit models.

7.1 Space Constraint

To extend our approach to the case where there is a space constraint, we use wj to denote the

space consumption of product j. Letting c be the total amount of space available for the offered

products, we want to solve the problem

Z∗ = max
x∈{0,1}|N|

{∑
g∈G

αg

∑
j∈N rj v

g
j xj

1 +
∑

j∈N vgj xj
:

∑
j∈N

wj xj ≤ c

}
, (10)

which maximizes the expected revenue obtained from a customer while making sure that the total

space consumption of the offered products does not exceed c. Thus, this problem is the analogue

of problem (1) under a space constraint. If we have wj = 1 for all j ∈ N , then problem (10) simply
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limits the total number of offered products to c. Following the same argument in Section 2, we use

the penalty parameters λ = {λg
j : j ∈ N, g ∈ G} ∈ ℜ|N |×|G| to penalize the absence or presence of

the products in the assortments offered to different customer types and define Πg(λ) as the optimal

objective value of the problem

Πg(λ) = max
x∈{0,1}|N|

{ ∑
j∈N rj v

g
j xj

1 +
∑

j∈N vgj xj
−

∑
j∈N

λg
j xj :

∑
j∈N

wj xj ≤ c

}
. (11)

The problem above is the analogue of problem (2). With the definitions of Z∗ as in (10) and Πg(λ)

as in (11), Lemma 1 continues to hold and we have
∑

g∈G αg Πg(λ) ≥ Z∗ for any λ ∈ Λ, where Λ is

as defined in Section 2. As mentioned in Section 2, computing Πg(λ) at any λ requires solving an

NP-complete problem. To approximate Πg(λ), we define Πg(λ, pL, pU ) as

Πg(λ, pL, pU ) = max
x∈[0,1]|N|

{∑
j∈N

(pU rj v
g
j − λg

j )xj :
∑
j∈N

vgj xj ≤
1

pL
− 1,

∑
j∈N

wj xj ≤ c

}
, (12)

which is the analogue of problem (4) under a space constraint. The problem above is a continuous

knapsack problem with two dimensions and Sinha and Zoltners (1979) discuss efficient solution

approaches for such knapsack problems. Letting pmin = ming∈G{1/(1 +
∑

j∈N vgj )} and using

{pk : k = 1, . . . ,K + 1} to denote a set of grid points that satisfy pmin = p1 ≤ p2 ≤ . . . ≤ pK ≤
pK+1 = 1, Proposition 2 continues to hold with the definitions of Πg(λ) as in (11) and Πg(λ, pL, pU )

as in (12). In this case, we can solve problem (5) to obtain the tightest possible upper bound on

the optimal expected revenue. Using the same approach in Section 4, we can show that the

objective function of problem (5) is convex in λ with the definition of Πg(λ, pL, pU ) as in (12) and

we can efficiently obtain subgradients of the objective function of this problem, which indicates

that problem (5) continues to be tractable under a space constraint. Therefore, the approach that

we propose to compute upper bounds on the optimal expected revenue remains applicable when

we have a constraint that limits the total space consumption of the offered products. The main

difference is that we need to work with the continuous knapsack problem with two dimensions given

in (12), instead of working with the continuous knapsack problem given in (4).

7.2 Mixture of Nested Logit Models

Under the nested logit model, the products are grouped into nests so that the products in the same

nest are closer substitutes of each other when compared with the products in different nests. Given

the nest structure, the choice process of a customer under the nested logit model proceeds in

two stages. First, the customer either chooses one of the nests or decides to leave without a

purchase. Second, if the customer chooses a nest, then the customer purchases one of the products

offered in this nest. In this section, we extend our approach to the case where customers choose

according to a mixture of nested logit models, as long as the number of products in each nest is

reasonably small, but the number of nests can be large. To formulate the nested logit model, we use

M to denote the set of nests and N to denote the set of products in each nest. Therefore, the total
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number of products is |M | × |N |. The set of customer types is G and a customer of type g arrives

with probability αg. We use Si ⊂ N to denote the set of products that we offer in nest i. Therefore,

the set of products offered in all nests are given by {Si : i ∈ M}. A customer of type g associates

the preference weight vgij with product j in nest i. As a function of Si, we use V
g
i (Si) =

∑
j∈Si

vgij to

denote the total preference weight of the products offered in nest i for a customer of type g. Under

the nested logit model, if a customer of type g has already decided to make a purchase in nest i

and the set Si of products are offered in this nest, then the customer purchases product j ∈ Si with

probability vgij/V
g
i (Si). Thus, using rij to denote the revenue associated with product j in nest i,

if a customer of type g has already decided to make a purchase in nest i and the set Si of products

are offered in this nest, then we obtain an expected revenue of

Rg
i (Si) =

∑
j∈Si

rij
vgij

V g
i (Si)

from this customer. A customer of type g associates the dissimilarity parameter γgi with nest i. In

particular, the parameter γgi measures how well the products in nest i substitute for each other for

a customer of type g; see McFadden (1974) and Train (2003). Under the nested logit model, if the

set of products offered in all nests are given by {Si : i ∈ M}, then a customer of type g decides to

make a purchase in nest i with probability

(V g
i (Si))

γg
i

1 +
∑

l∈M (V g
l (Sl))

γg
l

,

where we normalize the preference weight of the no purchase option to one. Thus, since Rg
i (Si) is

the expected revenue from a customer of type g that has already decided to make a purchase in

nest i, if the set of products offered over all nests are given by {Si : i ∈ M}, then the expected

revenue obtained from a customer of type g is
∑

i∈M Rg
i (Si) (V

g
i (Si))

γg
i /(1 +

∑
i∈M (V g

i (Si))
γg
i ). In

this case, we can solve the problem

Z∗ = max
{Si : i ∈ M} :
Si ⊂ N ∀ i ∈ M

{∑
g∈G

αg

∑
i∈M Rg

i (Si) (V
g
i (Si))

γg
i

1 +
∑

i∈M (V g
i (Si))

γg
i

}
(13)

to find the set of products to offer over all nests so as to maximize the expected revenue obtained

from a customer. In the problem above, the fraction computes the expected revenue from a customer

of type g, whereas the outer sum computes the expected revenue over all customer types. In our

formulation, we assume that there are |N | products in each nest, but it is straightforward to extend

our formulation to the case where different nests have different numbers of products.

If we have γgi = 1 for all i ∈ M , g ∈ G, then the nested logit model becomes equivalent to

the multinomial logit model; see Train (2003). Thus, solving problem (13) is at least as difficult

as finding a set of products to offer that maximizes the expected revenue under a mixture of

multinomial logit models. We focus on obtaining an upper bound on the optimal expected revenue

Z∗ in problem (13). Our approach for obtaining such an upper bound exploits the assumption that
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the number of products in each nest is reasonably small. The starting point for our approach is

an appropriate reformulation of problem (13). To give this reformulation, we define the decision

variable xi(Si) such that xi(Si) = 1 is we offer the set Si of products in nest i, otherwise we have

xi(Si) = 0. In this case, using x = {xi(Si) : i ∈ M, Si ⊂ N} ∈ {0, 1}|M |×2|N|
to capture the sets of

products offered in different nests and letting νgi (Si) = (Vi(Si))
γg
i for notational brevity, we observe

that problem (13) is equivalent to the problem

Z∗ = max
x∈{0,1}|M|×2|N|

{∑
g∈G

αg

∑
i∈M

∑
Si⊂N Rg

i (Si) ν
g
i (Si)xi(Si)

1 +
∑

i∈M
∑

Si⊂N νgi (Si)xi(Si)
:
∑
Si⊂N

xi(Si) = 1 ∀ i ∈ M

}
, (14)

where the decision variables {xi(Si) : Si ⊂ N} describe which set of products we offer in nest i and

the constraints ensure that we offer exactly one set of products in each nest, but this set can be the

empty set. In the problem above, we have one decision variable xi(Si) for each nest i and for each

set Si ⊂ N . Thus, the number of decision variables is manageable when the number of products in

each nest |N | is reasonably small. The number of decision variables is manageable even when the

number of nests |M | is large. Redefining the set of products appropriately, it is possible to see that

the objective function of problem (14) is similar to the expected revenue function when customers

choose according to a mixture of multinomial logit models. In particular, we index the products

by {(i, Si) : i ∈ M, Si ⊂ N}. If a customer of type g purchases product (i, Si), then we generate a

revenue of Rg
i (Si). Furthermore, a customer of type g associates a preference weight of νgi (Si) with

product (i, Si). For all i ∈ M , Si ⊂ N and g ∈ G, we can compute and store Rg
i (Si) and νgi (Si)

so that {Rg
i (Si) : i ∈ M, Si ⊂ N, g ∈ G} and {νgi (Si) : i ∈ M, Si ⊂ N, g ∈ G} become constant

parameters in problem (14). Thus, comparing the objective function of problem (14) with that

of problem (1), the objective function of problem (14) is similar to the expected revenue function

when customers choose according to a mixture of multinomial logit models.

Building on this similarity, we can use the approach in Section 2 to obtain an upper bound on

the optimal expected revenue Z∗ in problem (14). In particular, we use the penalty parameters

λ = {λg
i (Si) : i ∈ M, Si ⊂ N, g ∈ G} ∈ ℜ|M |×2|N|×|G|, where λg

i (Si) penalizes offering or not

offering product (i, Si) to a customer of type g. As a function of the penalty parameters, we define

Πg(λ) as the optimal objective value of the problem

Πg(λ) = max
x∈{0,1}|M|×2|N|

{∑
i∈M

∑
Si⊂N Rg

i (Si) ν
g
i (Si)xi(Si)

1 +
∑

i∈M
∑

Si⊂N νgi (Si)xi(Si)
−

∑
i∈M

∑
Si⊂N

λg
i (Si)xi(Si)

:
∑
Si⊂N

xi(Si) = 1 ∀ i ∈ M

}
, (15)

which is the analogue of problem (2) under a mixture of nested logit models. We define the set of

penalty parameters Λ = {λ ∈ ℜ|M |×2|N|×|G| :
∑

g∈G αg λg
i (Si) = 0 ∀ i ∈ M, Si ⊂ N}. With this

definition of Λ and the definitions of Z∗ as in (14) and Πg(λ) as in (15), it is possible to check

that Lemma 1 continues to hold and we have
∑

g∈G αg Πg(λ) ≥ Z∗ for any λ ∈ Λ. Due to the

binary decision variables and the nonlinear objective function in problem (15), computing Πg(λ)
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for a particular value of λ can be difficult. We get around this difficulty by using an approximation

to Πg(λ). For our approximation of Πg(λ), we define Πg(λ, pL, pU ) as

Πg(λ, pL, pU ) = max
x∈[0,1]|M|×2|N|

{∑
i∈M

∑
Si⊂N

(pUR
g
i (Si) ν

g
i (Si)− λg

i (Si))xi(Si)

:
∑
i∈M

∑
Si⊂N

νgi (Si)xi(Si) ≤
1

pL
− 1,

∑
Si⊂N

xi(Si) = 1 ∀ i ∈ M

}
, (16)

which is the analogue of problem (4) under a mixture of nested logit models. The problem above

is a continuous multiple choice knapsack problem; see Sinha and Zoltners (1979). In the objective

function of problem (15), the smallest value of 1/(1 +
∑

i∈M
∑

Si⊂N νgi (Si)xi(Si)) in any feasible

solution to this problem is 1/(1+
∑

i∈M νgi (N)). Thus, letting pmin = ming∈G{1/(1 +
∑

i∈M νgi (N))}
and using {pk : k = 1, . . . ,K + 1} to denote a set of grid points that satisfy pmin = p1 ≤ p2 ≤
. . . ≤ pK ≤ pK+1 = 1, Proposition 2 continues to hold with the definitions of Πg(λ) as in (15)

and Πg(λ, pL, pU ) as in (16). In this case, we can solve problem (5) to obtain the tightest possible

upper bound on the optimal expected revenue. We can use the same approach in Section 4 to

show that the objective function of problem (5) is convex in λ with the definition of Πg(λ, pL, pu)

as in (16). Also, we can use the same approach in Section 4 to obtain subgradients of the objective

function of problem (5), which implies that problem (5) continues to be tractable under a mixture

of nested logit models. These observations indicate that the approach that we propose to obtain

upper bounds on the optimal expected revenue remains applicable under a mixture of nested logit

models. The main difference is that we need to work with problem (16), instead of problem (4).

8 Computational Experiments

In this section, we provide computational experiments that test the quality of the upper bounds

on the optimal expected revenue that we obtain by solving problem (5).

8.1 Benchmark Strategies

We compare the upper bounds provided by the following three benchmark strategies.

Penalty Multipliers (PM). This benchmark strategy corresponds to the upper bound provided

by the optimal objective value of problem (5). The set of grid points that we use is of the form

{(1 + ρ)−k+1 : k = 1, . . . ,K + 1} with K = O(log(pmin)/ log(1 + ρ)). We use ρ = 0.001. To

ensure that λ ∈ Λ, we choose an arbitrary customer type ϕ and assume that only the penalty

multipliers {λg
j : j ∈ N, g ∈ G \ {ϕ}} are decision variables in problem (5). We solve the penalty

parameters corresponding to customer type ϕ in terms of the other penalty parameters to obtain

λϕ
j = −

∑
g∈G\{ϕ} α

gλg
j/α

ϕ for all j ∈ N . In this way, we ensure that λ ∈ Λ without explicitly

imposing this constraint. When implementing PM, we solve problem (5) by using subgradient

search with the initial solution λ = 0̄. We use subgradient search for 100 iterations, where the step
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size at iteration t is of the form 1/t. Our hope is that these 100 iterations get us into the vicinity

of a reasonable solution. After these 100 iterations, we switch to another form for the step size,

where we increase the step size by a factor of two after each iteration that yields an improvement

in the objective value of problem (5), whereas we decrease the step size by a factor of two after

each iteration that does not yield an improvement. This form for the step size may not ensure

convergence to an optimal solution to problem (5), but it provides consistently good performance

in our experience. Since the optimal objective value of problem (5) provides an upper bound on

the optimal expected revenue Z∗ and this problem is a minimization problem, any feasible solution

to problem (5) also provides an upper bound on the optimal expected revenue.

Customer Type Decomposition (CD). This benchmark strategy corresponds to the upper bound

obtained under the assumption that we know the type of an arriving customer so that we can

offer different sets of products to customers of different types. In particular, we can solve the

problem maxx∈{0,1}|N|
∑

j∈N P g
j (x) rj = maxx∈{0,1}|N|(

∑
j∈N rj v

g
j xj)/(1 +

∑
j∈N vgj xj) to find a

set of products that maximizes the expected revenue obtained from a customer of type g. Talluri

and van Ryzin (2004) show that this problem, which involves a single customer type, can be solved

efficiently. Thus, letting Ẑg be the optimal objective value of this problem, the largest expected

revenue that we can obtain from a customer of type g is given by Ẑg. The upper bound provided by

CD is
∑

g∈G αg Ẑg, which corresponds to the optimal expected revenue that can be obtained under

the assumption that we can offer different sets of products to customers of different types. Since

problem (1) requires that we offer a single set of products to customers of all types,
∑

g∈G αg Ẑg

is an upper bound on the optimal objective value of problem (1). CD builds on Talluri (2011),

where the author shows that allowing a retailer to offer different sets to different customer types

can provide good approximations in network revenue management problems.

Branch and Bound (BB). Bront et al. (2009) give a mixed integer programming formulation

for problem (1), but solving this mixed integer programming formulation to optimality can be

time consuming for large problem instances. We apply branch and bound on the mixed integer

programming formulation for a fixed amount of run time and check the best upper bound that

branch and bound achieves on the optimal objective value of the mixed integer program. Therefore,

the upper bound provided by BB corresponds to the best upper bound that we obtain by using

branch and bound for a fixed amount of run time. We choose the run time for branch and bound

as twice the run time for PM, so that we can compare the upper bounds obtained by PM and BB

within comparable amounts of run time.

8.2 Experimental Setup

In our computational experiments, we generate a large number of problem instances and compare

the upper bounds provided by PM, CD and BB for each problem instance. We use the following

approach for generating our problem instances. Throughout our computational experiments, the

number of products |N | is 100. We vary the number of customer types |G|. To come up with the
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revenues, we simply sample rj from the uniform distribution over [0, 2000] for all j ∈ N . To come

up with the probabilities {αg : g ∈ G} of observing customers of different types, we sample βg from

the uniform distribution over [0, 1] for all g ∈ G and set αg = βg/
∑

c∈G βc.

To come up with the preference weights, we choose a set S ⊂ N of products and designate them

as specialty products. We refer to the remaining set of products as staple products. Throughout our

computational experiments, the number of staple products |S| is 40. Customers of different types

can associate significantly different preference weights with a specialty product, indicating that the

evaluations of a specialty product by customers of different types can be quite different. Customers

of different types evaluate a staple product more or less in the same fashion. To generate preference

weights with these characteristics, for all j ∈ N , g ∈ G, we sample Xg
j as follows. If product j

is a specialty product, then we sample Xg
j from the uniform distribution over [0.1, 0.3] ∪ [0.7, 0.9],

whereas if product j is a staple product, then we sample Xg
j from the uniform distribution over

[0.3, 0.7]. Thus, the variance of Xg
j is larger when product j is a specialty product. For all j ∈ N ,

we also sample κj from the uniform distribution over [1, K̄], where K̄ is a parameter that we vary in

our computational experiments. In this case, we set the preference weight vgj that a customer of type

g associates with product j as a quantity that is proportional to κj X
g
j . In this setup, the value of

κj determines an overall magnitude for the preference weights {vgj : g ∈ G} associated with product

j. Furthermore, if product j is a specialty product, then the variance of Xg
j is relatively large, in

which case, the variance of κj X
g
j is relatively large as well. So, if product j is a specialty product,

then the preference weights {vgj : g ∈ G} that customers of different types associate with product

j display relatively large variability among themselves, which agrees with our expectation from a

specialty product. Similarly, if product j is a staple product, then the variance of Xg
j is relatively

small so that the preference weights {vgj : g ∈ G} that customers of different types associate with

product j display relatively small variability among themselves.

As mentioned above, we set the preference weight vgj that a customer of type g associates

with product j as a quantity that is proportional to κj X
g
j . To come up with the values of the

preference weights, we sample P g
0 from the uniform distribution over [0, P̄0] for all g ∈ G, where

P̄0 is a parameter that we vary in our computational experiments. In this case, we set the value

of the preference weight vgj as vgj = κj X
g
j (1 − P g

0 )/(P
g
0

∑
i∈N κiX

g
i ). Noting that

∑
j∈N vgj =∑

j∈N κj X
g
j (1 − P g

0 )/(P
g
0

∑
i∈N κiX

g
i ) = (1 − P g

0 )/P
g
0 in this setup, even if we offer all of the

products to the customers, a customer of type g leaves without making a purchase with probability

1/(1 +
∑

j∈N vgj ) = 1/(1 + (1 − P g
0 )/P

g
0 ) = P g

0 . Therefore, if we use a larger value for P̄0, then

customers are more likely to leave without making a purchase. Also, if we use a larger value for

P̄0, then the variance of P g
0 gets larger and customers of different types tend to become more

heterogeneous in terms of their tendency to leave without making a purchase.

In our computational experiments, we vary |G|, K̄ and P̄0 over |G| ∈ {25, 50, 75}, K̄ ∈ {5, 10, 20}
and P̄0 ∈ {0.6, 0.8, 1.0}. This setup provides 27 parameter combinations. In each parameter

combination, we generate 1000 individual problem instances by using the approach described
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above. For each problem instance, we compute the upper bounds on the optimal expected revenue

provided by PM, CD and BB. To put these upper bounds into perspective, we also use a greedy

heuristic to find a solution to problem (1). In the greedy heuristic, we start with a solution to

problem (1) that does not include any products. Given the current solution, we try adding or

removing each one of the products into or from this current solution. Among all of these options,

we update the current solution by using the option that provides the largest improvement in the

expected revenue from the current solution. If none of the options provides an improvement, then

we stop. The expected revenue from the solution obtained by the greedy heuristic provides a lower

bound on the optimal expected revenue. By checking the gap between the upper bound on the

optimal expected revenue provided by PM, CD or BB and the expected revenue from the greedy

heuristic, we can assess how PM, CD and BB compare with each other in terms of the tightness of

their upper bounds and we can get a conservative estimate of how much the upper bounds provided

by PM, CD and BB deviate from the optimal expected revenue.

8.3 Computational Results

We give our main computational results in Table 1. The first column in this table shows the

parameter combinations for our test problems by using (|G|, K̄, P̄0). We recall that we generate

1000 problem instances in each parameter combination. For each problem instance k, we compute

the expected revenue from the solution obtained by the greedy heuristic. We let GRRk be this

expected revenue. We use PM, CD and BB to compute upper bounds on the optimal expected

revenue. We let PMUk, CDUk and BBUk respectively be the upper bounds provided by PM, CD and

BB for problem instance k. The second column in Table 1 shows the percent gap between the upper

bounds from PM and the expected revenues from the greedy heuristic, averaged over all problem

instances in a parameter combination. In other words, this column shows the average of the data

points {100× (PMUk − GRRk)/PMUk : k = 1, . . . , 1000}, which can be used to assess the average

optimality gap of the greedy heuristic when we use the upper bounds from PM to check the quality

of a solution. The third and the fourth columns respectively show the 95th percentile and maximum

of the same data points {100× (PMUk − GRRk)/PMUk : k = 1, . . . , 1000}. The interpretations of

the fifth, sixth and seventh columns are similar to those of the previous three columns, but the

fifth, sixth and seventh columns respectively show the average, 95th percentile and maximum of

the percent gaps between {CDUk : k = 1, . . . , 1000} and {GRRk : k = 1, . . . , 1000}, giving a feel for

the optimality gaps of the greedy heuristic when we only use the upper bounds provided by CD to

check the quality of a solution. Finally, the eighth, ninth and tenth columns respectively show the

average, 95th percentile and maximum of the percent gaps between {BBUk : k = 1, . . . , 1000} and

{GRRk : k = 1, . . . , 1000}, which indicate the optimality gaps of the greedy heuristic when we only

use BB to obtain upper bounds on the optimal expected revenues.

The results in Table 1 indicate that the upper bounds provided by PM for our problem instances

are quite tight. Over all of our problem instances, the average gap between the upper bounds
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Param. % Gap. of PMUk % Gap. of CDUk % Gap. of BBUk

Comb. with GRRk with GRRk with GRRk

(|G|, K̄, P̄0) Avg. 95th Max. Avg. 95th Max. Avg. 95th Max.

(25, 5, 0.6) 0.14 0.29 0.96 5.13 8.38 11.20 4.66 7.79 10.22
(25, 5, 0.8) 0.15 0.33 0.93 5.87 9.74 13.09 4.63 8.10 12.27
(25, 5, 1.0) 0.16 0.35 0.93 6.12 10.35 15.37 3.87 7.35 12.91

(25, 10, 0.6) 0.14 0.29 0.90 5.42 9.13 12.89 5.09 8.58 12.75
(25, 10, 0.8) 0.15 0.42 0.99 5.98 10.48 15.57 5.30 9.59 14.05
(25, 10, 1.0) 0.16 0.38 0.96 6.37 11.19 15.37 5.06 9.30 13.77

(25, 20, 0.6) 0.15 0.35 0.85 5.56 9.26 13.14 5.19 8.87 12.91
(25, 20, 0.8) 0.15 0.34 0.97 6.14 10.52 16.96 5.58 9.89 16.00
(25, 20, 1.0) 0.16 0.39 0.99 6.36 11.23 17.52 5.31 9.64 14.70

(50, 5, 0.6) 0.15 0.32 0.67 5.46 8.10 10.75 5.03 7.64 10.44
(50, 5, 0.8) 0.16 0.34 0.68 6.14 9.28 12.95 5.08 7.87 11.35
(50, 5, 1.0) 0.16 0.32 0.95 6.38 9.80 12.17 4.91 7.84 9.79

(50, 10, 0.6) 0.15 0.29 0.80 5.69 8.62 12.20 5.51 8.35 12.05
(50, 10, 0.8) 0.15 0.32 0.86 6.34 9.60 12.72 5.73 8.82 12.02
(50, 10, 1.0) 0.16 0.37 0.96 6.70 10.14 14.76 5.65 8.62 12.63

(50, 20, 0.6) 0.15 0.29 0.82 5.81 8.68 12.47 5.63 8.49 12.34
(50, 20, 0.8) 0.16 0.33 0.97 6.57 9.83 14.26 6.12 9.27 13.97
(50, 20, 1.0) 0.16 0.36 0.87 6.85 10.53 14.73 5.87 9.41 13.32

(75, 5, 0.6) 0.15 0.27 0.84 5.52 7.91 9.98 5.43 7.76 9.78
(75, 5, 0.8) 0.15 0.28 0.85 6.28 8.89 10.64 5.85 8.43 10.08
(75, 5, 1.0) 0.16 0.32 0.75 6.57 9.70 11.36 5.63 8.57 10.14

(75, 10, 0.6) 0.15 0.26 0.81 5.77 8.39 11.01 5.70 8.29 10.65
(75, 10, 0.8) 0.15 0.29 0.93 6.47 9.60 13.77 6.05 9.19 13.27
(75, 10, 1.0) 0.15 0.30 0.77 6.81 9.88 14.08 6.00 9.02 13.12

(75, 20, 0.6) 0.14 0.27 0.97 5.93 8.56 12.69 5.86 8.46 12.64
(75, 20, 0.8) 0.15 0.29 0.83 6.63 9.61 13.50 6.24 9.18 13.15
(75, 20, 1.0) 0.16 0.31 0.98 7.04 10.11 13.21 6.25 9.26 12.30

Average 0.15 6.15 5.45

Table 1: Comparison of the upper bounds provided by PM, CD and BB.

from PM and the expected revenues from the greedy heuristic is 0.15%, whereas the maximum

gap between the upper bounds from PM and the expected revenues from the greedy heuristic is

0.99%. The small gaps between the upper bounds from PM and the expected revenues from the

greedy heuristic demonstrate that the upper bounds provided by PM are within a fraction of a

percent of the optimal expected revenues. Furthermore, if we use PM to obtain upper bounds on

the optimal expected revenues, then we can establish that the greedy heuristic provides optimality

gaps no larger than 0.99% for our problem instances. In contrast, the upper bounds provided by CD

or BB can be substantially looser. The gap between the upper bound from CD and the expected

revenue from the greedy heuristic can be as large as 17.52%. In other words, if we use the upper

bounds from CD to evaluate the quality of a solution, then there are problem instances where we

are left with the impression that the greedy heuristic may have optimality gaps as large as 17.52%,

although we can use the upper bounds from PM to establish that the optimality gaps of the greedy

heuristic are actually no larger than 0.99%. The upper bounds provided by BB improve those

provided by CD slightly. The average and maximum gaps between the upper bounds from BB and

the expected revenues from the greedy heuristic are respectively 5.45% and 16%. The same gaps are
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respectively 6.15% and 17.52% when we consider CD. Overall, our computational results for PM

demonstrate that the upper bounds from PM are within 1% of the optimal expected revenues and

the optimality gaps of the greedy heuristic are no larger than 1%. The last observation, together

with the fact that the gap between the upper bound provided by BB and the expected revenue from

the greedy heuristic can exceed 15%, indicates that the upper bound provided by BB can deviate

from the optimal expected revenue by almost 14%. Naturally, the mixed integer programming

formulation used by BB would eventually obtain the optimal expected revenue, but it turns out

that this formulation is not effective when we want to obtain good upper bounds on the optimal

expected revenues within a limited amount of run time. We shortly investigate the reasons why

BB does not yield tight upper bounds.

It is useful to point out an interesting trend in Table 1. As P̄0 increases, there are larger gaps

between the upper bound provided by CD and the expected revenue from the greedy heuristic. As

mentioned when describing our experimental setup in Section 8.2, as P̄0 increases, customers of

different types tend to become more heterogeneous in terms of their tendency to leave without

making a purchase. As customers of different types become more heterogeneous, CD, which is

based on the assumption that we can offer different sets of products to different customer types,

ends up offering significantly different sets to different customer types. In this case, the upper

bound from CD can deviate significantly from the optimal objective value of problem (1), which

does not allow offering different sets of products to different customer types. In contrast, the gaps

between the upper bound provided by PM and the expected revenue from the greedy heuristic

remain quite stable as P̄0 increases.

The results in Table 1 show that the upper bounds provided by BB are not as tight, indicating

that the mixed integer program used by BB is ineffective in obtaining good upper bounds within a

limited amount of run time. One reason that BB is not able to obtain good upper bounds is that the

linear programming relaxation of the mixed integer program used by BB turns out to be loose. In all

of our test problems, the linear programming relaxation of the mixed integer program only slightly

improves the upper bound from CD. To shed more light into this observation, Proposition 4 in

Online Appendix A shows that when we focus on each customer type individually, if customers of

each type make a purchase with a probability that exceeds 1/2, then the optimal objective value of

the linear programming relaxation of the mixed integer program used by BB precisely corresponds

to the upper bound provided by CD. Thus, although it is tempting to try to obtain upper bounds

on the optimal expected revenue by solving the linear programming relaxation of the mixed integer

program used by BB, this upper bound does not improve the one provided by CD when customers

make a purchase with a reasonably large probability.

In Table 2, we give the details on the gaps between the upper bounds obtained by our benchmark

strategies and the expected revenues from the greedy heuristic. The first column in this table shows

the parameter combinations for our test problems. The second column shows the number of problem

instances where the gap between the upper bound obtained by PM and the expected revenue from
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the greedy heuristic is less than 0.125%. The interpretations of the third, fourth, fifth, sixth and

seventh columns are similar to that of the second column, but these columns show the numbers

of problem instances where the gap between the upper bound obtained by PM and the expected

revenue from the greedy heuristic is respectively less than 0.25%, 0.5%, 2.5%, 5% and 7.5%. The

eighth to thirteenth columns have the same interpretations as the second to seventh columns, but

they focus on the gap between the upper bound obtained by BB and the expected revenue from the

greedy heuristic. The upper bounds provided by BB are slightly better than those from CD. For

economy of space, we do not provide the details on CD. The results in Table 2 indicate that in more

than 24000 out of 27000 problem instances, we can use the upper bounds from PM to conclude that

the optimality gap of the greedy heuristic is smaller than 0.25%, which also implies that the upper

bounds provided by PM for these problem instances deviate from the optimal expected revenues by

at most 0.25%. In contrast, the upper bounds provided by BB deviate from the expected revenues

from the greedy heuristic by less than 5% in only about 11500 out of 27000 problem instances. For

PM, the gaps between the upper bounds and the expected revenues from the greedy heuristic are

almost exclusively less than 0.5%, whereas the gaps between the upper bounds from BB and the

expected revenues from the greedy heuristic almost never falls below 0.5%.

The run times for PM are quite reasonable. Over all of our problem instances, the average run

time for PM is 3.95 seconds. Considering the problem instances with 25, 50 and 75 customer types

separately, the average run time for PM is respectively 1.91, 3.94 and 6.01 seconds. Overall, our

results indicate that PM can obtain quite tight upper bounds on the optimal expected revenues. The

small gaps between the upper bounds from PM and the expected revenues from the greedy

heuristic do not only demonstrate that the upper bounds provided by PM are close to the optimal

expected revenues, but also point out that the greedy heuristic is effective in obtaining near optimal

solutions. In this way, the upper bounds provided by PM can be used to check the quality of the

solutions provided by not only the greedy heuristic, but also any other heuristic or approximation

method that is used to obtain solutions to assortment problems, when customers choose according

to a mixture of multinomial logit models.

8.4 Specially Structured Problem Instances

The computational results that we present so far indicate that the upper bounds provided by PM

can be quite tight. In this section, we work with small and specially structured problem instances

to demonstrate that it is possible to come up with problem instances where the upper bounds

provided by PM are not quite as tight. In particular, we focus on a class of problem instances

where the number of customer types |G| is equal to the number of products |N |. For a scalar

θ > 1, Table 3 lists the parameters of a problem instance for the case with |G| = |N | = 3. For

example, the revenues associated with the products in this problem instance are (r1, r2, r3) =

(1, θ, θ2). A customer of type two associates the preference weights (v21, v
2
2, v

2
3) = (θ6, θ4, 0) with the

products. The probability of observing a customer of type two is α2 = θ/(1 + θ + θ2). Following
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Param. Number of Problems with a Certain Number of Problems with a Certain

Comb. % Gap between PMUk and GRRk % Gap between BBUk and GRRk

(|G|, K̄, P̄0) 0.125% 0.25% 0.5% 2.5% 5% 7.5% 0.125% 0.25% 0.5% 2.5% 5% 7.5%

(25, 5, 0.6) 622 932 990 1000 1000 1000 0 0 0 105 598 939
(25, 5, 0.8) 606 908 976 1000 1000 1000 0 0 0 159 592 908
(25, 5, 1.0) 577 891 973 1000 1000 1000 0 0 1 257 757 956

(25, 10, 0.6) 642 926 984 1000 1000 1000 0 0 0 78 524 876
(25, 10, 0.8) 672 903 965 1000 1000 1000 0 0 0 83 510 828
(25, 10, 1.0) 608 889 973 1000 1000 1000 0 0 0 110 536 856

(25, 20, 0.6) 673 919 979 1000 1000 1000 0 0 0 65 518 857
(25, 20, 0.8) 665 916 984 1000 1000 1000 0 0 0 65 437 816
(25, 20, 1.0) 652 896 973 1000 1000 1000 0 0 1 85 492 824

(50, 5, 0.6) 519 907 989 1000 1000 1000 0 0 0 15 529 937
(50, 5, 0.8) 508 899 986 1000 1000 1000 0 0 0 26 518 924
(50, 5, 1.0) 498 900 980 1000 1000 1000 0 0 0 46 559 938

(50, 10, 0.6) 571 926 993 1000 1000 1000 0 0 0 15 420 878
(50, 10, 0.8) 555 924 986 1000 1000 1000 0 0 0 13 373 837
(50, 10, 1.0) 534 900 977 1000 1000 1000 0 0 0 20 376 854

(50, 20, 0.6) 573 918 987 1000 1000 1000 0 0 0 9 367 873
(50, 20, 0.8) 548 897 984 1000 1000 1000 0 0 0 11 294 755
(50, 20, 1.0) 513 893 984 1000 1000 1000 0 0 0 15 354 820

(75, 5, 0.6) 498 942 993 1000 1000 1000 0 0 0 4 399 934
(75, 5, 0.8) 516 932 990 1000 1000 1000 0 0 0 2 313 862
(75, 5, 1.0) 446 905 986 1000 1000 1000 0 0 0 8 386 874

(75, 10, 0.6) 522 944 995 1000 1000 1000 0 0 0 0 350 874
(75, 10, 0.8) 515 927 984 1000 1000 1000 0 0 0 1 257 832
(75, 10, 1.0) 471 925 992 1000 1000 1000 0 0 0 7 302 824

(75, 20, 0.6) 561 941 996 1000 1000 1000 0 0 0 0 288 873
(75, 20, 0.8) 523 921 989 1000 1000 1000 0 0 0 3 240 784
(75, 20, 1.0) 471 913 988 1000 1000 1000 0 0 0 0 238 777

Total 15059 24694 26576 27000 27000 27000 0 0 2 1202 11527 23310

Table 2: Distribution of the upper bounds provided by PM and BB.

the pattern in Table 3, it is straightforward to generalize this problem instance to a larger value

for |G| and |N |. For example, for the case with |G| = |N | = 5, the revenues associated with

the five products are (r1, r2, r3, r4, r5) = (1, θ, θ2, θ3, θ4). A customer of type one associates the

preference weights (v11, v
1
2, v

1
3, v

1
4, v

1
5) = (θ10, θ8, θ6, θ4, θ2) with the products, whereas a customer of

type two associates the preference weights (v21, v
2
2, v

2
3, v

2
4, v

2
5) = (θ10, θ8, θ6, θ4, 0). The probability

of observing a customer of type two would be α2 = θ/(1 + θ + θ2 + θ3 + θ4).

The motivation behind the problem instance in Table 3 is that if the value of θ is large, then

CD, which offers different sets of products to different customer types, provides an upper bound

that deviates from the optimal expected revenue by a factor that is close to |G| = |N |. Thus, for

this problem instance, the upper bound obtained under the assumption that we can offer different

sets of products to different customer types can be quite poor. To see this result, we observe that

if we offer the set {3} of products to a customer of type one, then we obtain an expected revenue of

θ4/(1 + θ2) from this customer type. If we offer the set {2} of products to a customer of type two,

then we obtain an expected revenue of θ5/(1 + θ4) from this customer type. Lastly, if we offer the
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Revenues

Product
1 2 3

1 θ θ2

Preference Weights

Cus. Product
Typ. 1 2 3

1 θ6 θ4 θ2

2 θ6 θ4 0
3 θ6 0 0

Arrival Probs.

Cus. Typ.
1 2 3

1

1 + θ + θ2
θ

1 + θ + θ2
θ2

1 + θ + θ2

Table 3: A specially structured problem instance with |G| = |N | = 3.

set {1} of products to a customer of type three, then we obtain an expected revenue of θ6/(1+ θ6)

from this customer type. Thus, noting the probability of observing each customer type in Table

3, the upper bound on the optimal expected revenue that we obtain by offering different sets of

products to customers of different types is at least

1

1 + θ + θ2

{
θ4

1 + θ2
+ θ

θ5

1 + θ4
+ θ2

θ6

1 + θ6

}
. (17)

In other words, using CDU to denote the upper bound obtained by CD, CDU is no smaller than

the quantity in (17). On the other hand, considering the optimal expected revenue in problem (1)

for this problem instance, we can check the expected revenue from each set of products, in which

case, it is straightforward to establish that the optimal expected revenue Z∗ in problem (1) for this

problem instance is at most (3 + 2 θ + θ2)/(1 + θ + θ2). We give the details of this computation in

Online Appendix B. In this case, noting the expression in (17), it follows that

CDU

Z∗ ≥

1

1 + θ + θ2

{
θ4

1 + θ2
+ θ

θ5

1 + θ4
+ θ2

θ6

1 + θ6

}
3 + 2 θ + θ2

1 + θ + θ2

.

As θ approaches to infinity, the expression on the right side above approaches to three. Thus, for

large values of θ, the upper bound obtained by offering different sets of products to customers of

different types exceeds the expected revenue by a factor that is close to three, indicating that the

upper bounds provided by CD can be quite loose for this problem instance.

A natural question is how much we can improve the upper bound provided by CD for this class

of problem instances through the use of penalty multipliers, which corresponds to the upper bound

provided by PM. It is difficult to compute the upper bound provided by PM in closed form and we

carry out numerical experiments. In Table 4, we give the optimal expected revenue Z∗, along with

the upper bounds on the optimal expected revenue obtained by PM and CD for different problem

instances parameterized by θ and |G|. All of the problem instances in Table 4 are generated by

following the pattern in Table 3 with values of θ ∈ {2, 4, 8} and |G| ∈ {3, 4, 5}. The first column

in this table shows the parameter combinations by using (θ, |G|). The second column shows the

optimal expected revenue Z∗, corresponding to the optimal objective value of problem (1). Since

the number of products is reasonably small, we compute the optimal expected revenue by checking

27



Param.
Comb.

(θ, |G|) Z∗ PMU CDU
PMU

Z∗
CDU

Z∗

(2, 3) 1.09 1.09 1.56 1.00 1.43
(2, 4) 1.12 1.27 1.99 1.13 1.77
(2, 5) 1.13 1.49 2.44 1.32 2.15

(4, 3) 1.04 1.24 2.24 1.19 2.14
(4, 4) 1.05 1.73 2.96 1.65 2.83
(4, 5) 1.05 2.00 3.71 1.91 3.54

(8, 3) 1.01 1.37 2.62 1.35 2.58
(8, 4) 1.01 1.98 3.49 1.96 3.44
(8, 5) 1.01 2.26 4.36 2.23 4.30

Table 4: Upper bounds provided by PM and CD for the specially structured problem instances.

the expected revenue provided by every possible assortment. The third column shows the upper

bound obtained by PM, which corresponds to the approach that propose in this paper. The fourth

column shows the upper bound obtained by CD, which corresponds to the upper bound obtained

by offering different sets to different customer types. Letting PMU and CDU respectively be the

upper bounds obtained by PM and CD, the fifth and sixth columns give the ratios PMU/Z∗ and

CDU/Z∗, characterizing the tightness of the upper bounds provided by PM and CD.

The results in Table 4 indicate that the upper bounds provided by CD for the specially

structured problem instances can be quite loose. For example, for the problem instance with

θ = 8 and |G| = 5, the upper bound provided by CD deviates from the optimal expected revenue

by a factor of about 4.3. This observation is consistent with the earlier discussion that establishes

that the upper bound provided by CD deviates from the optimal expected revenue by a factor that

is close to |G| when θ is large. The upper bounds provided by PM can significantly improve those

provided by CD. For the problem instance with θ = 8 and |G| = 5, the upper bound provided by

PM deviates from the optimal expected revenue by a factor of about 2.23, while the upper bound

provided by CD deviates by a factor of about 4.3. Nevertheless, the upper bounds provided by

PM can still be quite loose. Furthermore, we observe that the upper bounds provided by both CD

and PM tend to get looser as |G| increases and there are more customer types. Thus, the results

in Table 4 indicate that PM can significantly improve the upper bounds from CD even for these

specially structured problem instances, but it is possible to construct problem instances where the

upper bounds provided by PM can still be quite loose. It is also worthwhile to note that these

problem instances, for which the upper bounds provided by PM can be quite loose, involve products

whose revenues and preference weights differ by orders of magnitude. For example, even with the

smallest value of two that we use for θ, if |G| = 5, then we have v11 = 1024, but v15 = 4.

There are three sources of error in the approach that PM uses to obtain upper bounds on

the optimal expected revenue. As discussed in Section 6, PM is equivalent to using Lagrangian

relaxation on an appropriate reformulation of problem (1). Since problem (1) does not have a

concave objective function and it involves binary decision variables, we do not necessarily obtain
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the optimal objective value of this problem through Lagrangian relaxation. Thus, the first source

of error is due to the fact that we use Lagrangian relaxation on a nonconvex optimization problem,

potentially resulting in a duality gap. The other two sources of error, as discussed at the end of

Section 3, is related to the approximation maxk∈{1,...,K}Π
g(λ, pk, pk+1) that we use for Πg(λ). In

particular, the second source of error is due to the fact that we use a finite number of grid points

in {pk : k = 1, . . . ,K + 1}. Proposition 3 and the following discussion imply that if we use grid

points of the form {(1 + ρ)−k+1 : k = 1, . . . ,K + 1}, then this source of error is no more than a

multiplicative factor of 1 + ρ. Thus, the second source of error can be alleviated by using a

small value for ρ. The third source of error is due to the fact that we do not impose binary

constraints on the decision variables in problem (4). The intuitive motivation is that the linear

programming relaxations of knapsack problems can give good approximations to the version with

binary constraints. For the large problem instances used in the previous section, none of the three

sources of error appears to be problematic, as the results in Table 1 indicate that the upper bounds

obtained by PM are quite tight. In the remainder of this section, we use the specially structured

problem instances to investigate the three sources of error. For these problem instances, we compute

the optimal expected revenue Z∗ in problem (1). In addition to computing the optimal expected

revenue, we use PM with ρ ∈ {0.5, 0.25, 0.1, 0.01, 0.001}, corresponding to five different numbers of

grid points. Furthermore, we also use PM with ρ = 0.001, but impose binary constraints on the

decision variables in problem (4).

Our results are summarized in Table 5. The first column in this table shows the parameter

combinations by using (θ, |G|). The second column shows the optimal expected revenue Z∗ in

problem (1). The third to seventh columns show the upper bounds obtained by PM when we

respectively use the values of 0.5, 0.25, 0.1, 0.01 and 0.001 for ρ. Finally, the eighth column shows

the upper bound obtained by PM when we use the value of 0.001 for ρ and impose binary constraints

on the decision variables in problem (4). As expected, when we use a smaller value for ρ and the

set of grid points are denser, the upper bounds provided by PM become tighter. When we decrease

ρ from 0.5 to 0.01, the upper bound quickly tightens, but decreasing ρ further from 0.01 to 0.001

yields a marginal improvement in the upper bound. These observations are consistent with the fact

that error caused by a finite number of grid points is at most a multiplicative factor of 1 + ρ. If we

impose binary constraints on the decision variables in problem (4), then the upper bound provided

by PM only marginally improves. Over all of our problem instances, the improvement was no larger

than 8 × 10−4, corresponding to an improvement of about 0.07%. This improvement occurs for

problem instance (θ, |G|) = (2, 3). Nevertheless, the upper bounds provided by PM can still be

loose when compared with the optimal expected revenue. For these specially structured problem

instances, our results indicate that by using a smaller value for ρ, we can quickly overcome the

source of error due to the fact that we use a finite number of grid points. In addition, the error

caused by the fact that we do not impose binary constraints in problem (4) does not appear to

be problematic, as imposing binary constraints only marginally improves the upper bound. Thus,

the most significant error appears to be due to the fact that we use Lagrangian relaxation on
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Param. PMU with a Certain PMU
Comb. Value for ρ Bin.
(θ, |G|) Z∗ 0.5 0.25 0.1 0.01 0.001 Const.

(2, 3) 1.09 1.44 1.30 1.18 1.10 1.09 1.09
(2, 4) 1.12 1.79 1.47 1.34 1.28 1.27 1.27
(2, 5) 1.13 1.89 1.67 1.60 1.50 1.49 1.49

(4, 3) 1.04 1.68 1.43 1.31 1.25 1.24 1.24
(4, 4) 1.05 2.09 1.91 1.78 1.73 1.73 1.73
(4, 5) 1.05 2.47 2.24 2.07 2.01 2.00 2.00

(8, 3) 1.01 1.72 1.59 1.46 1.38 1.37 1.37
(8, 4) 1.01 2.22 2.23 2.10 2.01 1.98 1.98
(8, 5) 1.01 2.63 2.52 2.38 2.27 2.26 2.26

Table 5: Upper bounds provided by PM with different values for ρ and with binary constraints in
problem (4).

a nonconvex optimization problem and we have a duality gap. Thus, by specially structuring

pathological problem instances, it is possible to come up with cases where the duality gap is large,

but the duality gaps do not appear to be a problem in any of the large problem instances that we

work with. Also, these pathological instances are relatively unlikely to appear in practice, since

as mentioned above, they involve products whose revenues and preference weights differ from each

other by orders of magnitude.

8.5 Problem Instances with a Space Constraint

In Section 7.1, we describe how to obtain upper bounds on the optimal expected revenue when

there is a space constraint on the set of offered products. In this section, we provide computational

experiments under a space constraint. We generate our test problems by using the approach

described in Section 8.2. The only difference is that we need to generate the space consumption

of each product and the total amount of space available. To come up with the space consumption

of product j, we simply set wj = 1. This setup corresponds to the case where we limit the total

number of products in the offered set. We also carried out computational experiments where we

sample the space consumption of each product from the uniform distribution over [0, 1] and the

performance of the upper bounds obtained by PM qualitatively remained the same. For economy

of space, we report the results for the case where wj = 1 for all j ∈ N . One advantage of working

with the case where wj = 1 for all j ∈ N is that if there is a single customer type and we have a

limit on the number of products that can be offered, then Rusmevichientong et al. (2010) show that

the optimal set of products to offer can efficiently be computed. Thus, it is tractable to compute

the upper bound provided by CD when we have wj = 1 for all j ∈ N , but this is not the case when

different products have different space consumptions. To come up with the total amount of space

available, after generating all of the other problem parameters as described in Section 8.2, we use

the greedy heuristic at the end of Section 8.2 to compute a reasonably good solution without a

space constraint. Using x̂ = {x̂j : j ∈ N} ∈ {0, 1}|N | to capture the set of products offered in this
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Param. % Gap. of PMUk % Gap. of CDUk % Gap. of BBUk

Comb. with GRRk with GRRk with GRRk

(|G|, K̄, P̄0, γ) Avg. 95th Max. Avg. 95th Max. Avg. 95th Max.

(20, 5, 0.8, 0.6) 0.21 0.31 0.69 10.94 14.09 15.81 4.78 6.92 8.90
(20, 5, 0.8, 0.8) 0.20 0.27 0.39 7.15 11.35 12.28 4.11 7.61 10.53
(20, 5, 1.0, 0.6) 0.21 0.27 0.45 11.20 14.36 19.73 4.27 6.97 10.01
(20, 5, 1.0, 0.8) 0.21 0.33 0.61 6.76 11.49 13.30 3.33 6.59 9.32

(20, 10, 0.8, 0.6) 0.21 0.32 0.70 11.42 15.84 17.61 5.40 8.86 9.67
(20, 10, 0.8, 0.8) 0.21 0.31 0.40 7.00 11.85 14.72 4.75 8.83 11.55
(20, 10, 1.0, 0.6) 0.20 0.22 0.34 11.02 14.14 15.18 4.96 7.49 8.53
(20, 10, 1.0, 0.8) 0.20 0.29 0.34 7.74 12.49 16.49 4.61 8.26 10.97

(40, 5, 0.8, 0.6) 0.22 0.33 0.66 11.35 14.74 15.92 5.69 8.03 11.52
(40, 5, 0.8, 0.8) 0.21 0.34 0.38 7.56 11.28 12.34 5.03 7.92 9.70
(40, 5, 1.0, 0.6) 0.21 0.25 0.55 11.47 14.44 17.31 5.05 7.42 10.44
(40, 5, 1.0, 0.8) 0.21 0.27 0.87 7.32 10.26 11.76 4.36 6.59 8.30

(40, 10, 0.8, 0.6) 0.20 0.23 0.47 11.29 13.94 15.96 5.89 7.83 9.49
(40, 10, 0.8, 0.8) 0.21 0.34 0.77 7.75 11.48 12.71 5.27 8.28 10.00
(40, 10, 1.0, 0.6) 0.21 0.32 0.49 11.92 15.17 17.01 5.77 8.70 10.32
(40, 10, 1.0, 0.8) 0.21 0.29 0.70 8.16 11.49 12.05 5.02 7.85 9.13

Average 0.31 10.16 5.43

Table 6: Comparison of the upper bounds provided by PM, CD and BB under a space constraint.

solution, we set the total amount of space available as c = γ
∑

j∈N wj x̂j , where γ is a parameter

that we vary. Thus, the total amount of space available is a γ fraction of the total amount of space

consumed by an unconstrained reasonably good assortment. Bront et al. (2009) extend their mixed

integer programming formulation to the case where there is a space constraint. Building on this

formulation, we can continue using BB when there is a space constraint.

In our computational experiments, we vary |G|, K̄, P̄0 and γ over |G| ∈ {20, 40}, K̄ ∈ {5, 10},
P̄0 ∈ {0.8, 1.0} and γ ∈ {0.6, 0.8}, where P̄0 and K̄ are as described in Section 8.2. This setup

provides 16 parameter combinations. In each parameter combination, we generate 100 individual

problem instances. Table 6 gives our computational results. The format of this table is similar

to that of Table 1. The results in Table 6 indicate that PM continues to provide quite tight

upper bounds on the optimal expected revenues when we have a space constraint and these upper

bounds are significantly tighter than the ones from CD and BB. Over all of our problem instances,

the average gap between the upper bounds obtained by PM and the expected revenues from the

greedy heuristic is 0.31%. This observation implies that the average gap between the upper bounds

obtained by PM and the optimal expected revenues is no larger than 0.31% as well. In the worst

case, the gap between the upper bound obtained by PM and the optimal expected revenue is

0.87%. The upper bounds provided by CD and BB are significantly looser. The average gap

between the upper bounds provided by CD and the expected revenues from the greedy heuristic

is 10.16%. This gap can be as large as 19.73% in the worst case. On the other hand, the average

gap between the upper bounds from BB and the expected revenues from the greedy heuristic is

5.43%. This gap can reach 11.52% in the worst case.
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8.6 Problem Instances under a Mixture of Nested Logit Models

In Section 7.2, we describe how to obtain upper bounds on the optimal expected revenue when

customers choose according to a mixture of nested logit models. In this section, we provide

computational experiments under a mixture of nested logit models. Throughout our computational

experiments, the number of nests |M | is 10 and the number of products in each nest |N | is 5, yielding
a total of 50 products. The number of customer types |G| is 50. To generate our test problems,

for all i ∈ M and j ∈ N , we sample the revenue rij associated with product j in nest i from

the uniform distribution over [200, 600]. For all g ∈ G and i ∈ M , we sample the dissimilarity

parameter γgi from the uniform distribution over [0, 1]. To come up with the preference weights,

for all g ∈ G, i ∈ M and j ∈ N , we sample ηgij from the uniform distribution over [0, 200]. For

all g ∈ G, we also sample ηg0 from the uniform distribution over [0, P̄0], where P̄0 is a parameter

that we vary. In this case, we set the preference weight vgij that a customer of type g associates

with product j in nest i as vgij = ηgij/(η
g
0)

1/γg
i . In this setup, if we offer all of the products in

all of the nests, then a customer of type g leaves without making a purchase with probability

1/(1 +
∑

i∈M (V g
i (N))γ

g
i ) = ηg0/(η

g
0 +

∑
i∈M (

∑
j∈N ηij)

γg
i ). So, customers of type g are more likely

to leave without making a purchase when ηg0 is larger. Thus, as P̄0 gets larger, customers are more

likely to leave without making a purchase. To come up with the customer arrival probabilities, we

sample βg from the uniform distribution over [0, 1] for all g ∈ G and set αg = βg/
∑

c∈G βc.

In our computational experiments, we vary P̄0 over P̄0 ∈ {25, 50, 100}. This setup provides three

parameter combinations. In each parameter combination, we generate 100 individual problem

instances. Table 7 gives our computational results. The first column in this table shows the

parameter combination by using P̄0. The interpretations of the second, third and fourth columns

in Table 7 are similar to those of the second, third and fourth columns in Table 1. These columns

respectively show the average, 95th percentile and maximum of the percent gaps between the

upper bound obtained by our approach and the expected revenue from the greedy heuristic, when

we focus on 100 problem instances in a particular parameter combination. The interpretations of

the fifth, sixth and seventh columns in Table 7 are similar to those of the second, third and fourth

columns in Table 2. These columns show the number of problem instances for which the percent

gap between the upper bound obtained by our approach and the expected revenue from the greedy

heuristic are respectively less than 0.5%, 1% and 2%. Over all of our problem instances, the upper

bounds obtained by our approach deviate from the expected revenues from the greedy heuristic by

0.58% on average, which implies that the average gap between our upper bounds and the optimal

expected revenues is no larger than 0.58%. The maximum gaps in Table 7 are larger than those

in Table 1. This difference is likely due to the fact that our extension to a mixture of nested logit

models works with problem (16), which is an |M |+1 dimensional knapsack problem and the linear

programming relaxations of such knapsack problems tend to be looser than those of one dimensional

knapsack problems. Nevertheless, we observe that in more than 85% of our problem instances, the

upper bounds obtained by our approach are within 1% of the optimal expected revenues.
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No. of Problems
with a Certain

Param. % Gap of PMUk % Gap between

Comb. with GRRk PMUk and GRRk

P̄0 Avg. 95th Max 0.5% 1% 2%

25 0.48 1.47 3.24 72 90 98
50 0.64 2.20 3.46 63 83 91

100 0.60 1.90 2.67 60 84 96

Average 0.58

Table 7: Upper bounds provided by our approach under a mixture of nested logit models.

9 Conclusions

We developed a method to obtain an upper bound on the optimal expected revenue in assortment

problems under a mixture of multinomial logit models. Our approach focuses on each customer type

one by one and finds a separate assortment that maximizes the expected revenue from each customer

type, but we use penalty parameters to synchronize the assortments offered to different customer

types. This strategy requires solving assortment problems with a single customer type but with a

fixed cost for offering a product. We develop tractable approximations to such assortment problems

by assuming that the probability of not making a purchase can take values over a prespecified

grid. We show how to obtain a set of good penalty parameters and a good set of grid points. We

extend our approach to the case where there is a constraint on the total space consumption of the

offered products or where the customers choose according to a mixture of nested logit models. In

our computational experiments, our upper bounds for randomly generated problem instances are

quite tight. However, there are pathological problem instances, where the revenues and preference

weights of the products differ from each other by orders of magnitude, for which our upper bounds

are not as tight. Ultimately, our approach will hopefully increase the practical use of mixture of

multinomial logit models. Although heuristics tend to provide good assortments, it is generally

difficult to check the quality of the solutions obtained by heuristics and our upper bounds allow

checking the quality of the solutions from any heuristic or approximation method.

There are several future research directions. Our approach for obtaining upper bounds has

three sources of error. First, as mentioned in Section 6, our approach is based on using Lagrangian

relaxation on a nonconvex optimization problem and there can be a duality gap. Second, we use

a finite number of grid points. Third, we do not impose binary constraints in problem (4). In

Section 5, we show that by using exponential grid points, we can bound the error due to the second

source of error by a multiplicative factor of 1 + ρ for any ρ > 0. It is possible to show that the

optimal objective value of a certain linear programming relaxation of a knapsack problem deviates

from the optimal objective value of the binary version by at most a factor of two; see Williamson

and Shmoys (2011). By using these two results, we can bound the error due the second and third

sources of error by a multiplicative factor of 2 (1 + ρ). However, it is difficult to bound the error

due to the first source of error and it might be possible to find special cases where we can bound
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this error. Also, our extension to a mixture of nested logit models is under the assumption that

the number of products in each nest is reasonably small, but the number of nests can be large. We

can make extensions to the case where the number of nests is reasonably small but the number

of products in each nest can be large. Briefly, the main idea for this extension is that if we have

a reasonably small number of nests, then we can assume that the total preference weight of the

products offered in a particular nest lies on a prespecified grid and we can carry out a search over

an |M | dimensional grid. Naturally, carrying out a search over an |M | dimensional grid is tractable

when the number of nests does not exceed three or four. A useful research direction is to make

extensions to a mixture of nested logit models with a large number of nests and a large number of

products in each nest. In addition to the nested logit model, it is useful to investigate upper bounds

under more general choice models, for which it is difficult to compute the optimal assortment.
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