
Capacity Constraints Across Nests in Assortment Optimization
Under the Nested Logit Model

Jacob B. Feldman
School of Operations Research and Information Engineering,

Cornell University, Ithaca, New York 14853, USA
jbf232@cornell.edu

Huseyin Topaloglu
School of Operations Research and Information Engineering,

Cornell University, Ithaca, New York 14853, USA
topaloglu@orie.cornell.edu

March 17, 2015

Abstract

We consider assortment optimization problems when customers choose according to the nested
logit model and there is a capacity constraint limiting the total capacity consumption of all
products offered in all nests. When each product consumes one unit of capacity, our capacity
constraint limits the cardinality of the offered assortment. For the cardinality constrained
case, we develop an efficient algorithm to compute the optimal assortment. When the capacity
consumption of each product is arbitrary, we give an algorithm to obtain a 4-approximate
solution. We show that we can compute an upper bound on the optimal expected revenue for
an individual problem instance by solving a linear program. In our numerical experiments, we
consider problem instances involving products with arbitrary capacity consumptions. Comparing
the expected revenues from the assortments obtained by our 4-approximation algorithm with
the upper bounds on the optimal expected revenues, our numerical results indicate that the
4-approximation algorithm performs quite well, yielding less than 2% optimality gap on average.

Keywords: Nested logit, discrete choice models, revenue management, assortment planning.

Technical Note: Capacity Constraints Across Nests in Assortment
Optimization Under the Nested Logit Model

Jacob B. Feldman, Huseyin Topaloglu

School of Operations Research and Information Engineering, Cornell University,
Ithaca, New York 14853, USA

jbf232@cornell.edu, topaloglu@orie.cornell.edu

March 17, 2015

Abstract
We consider assortment optimization problems when customers choose according to the nested
logit model and there is a capacity constraint limiting the total capacity consumption of all
products offered in all nests. When each product consumes one unit of capacity, our capacity
constraint limits the cardinality of the offered assortment. For the cardinality constrained
case, we develop an efficient algorithm to compute the optimal assortment. When the capacity
consumption of each product is arbitrary, we give an algorithm to obtain a 4-approximate
solution. We show that we can compute an upper bound on the optimal expected revenue for
an individual problem instance by solving a linear program. In our numerical experiments, we
consider problem instances involving products with arbitrary capacity consumptions. Comparing
the expected revenues from the assortments obtained by our 4-approximation algorithm with
the upper bounds on the optimal expected revenues, our numerical results indicate that the
4-approximation algorithm performs quite well, yielding less than 2% optimality gap on average.

1 Introduction

A conventional approach to modeling demand in revenue management is to assume that each

customer arrives into the system with the intention of purchasing a fixed product. If this product

is available for sale, then the customer purchases it. Otherwise, the customer leaves the system

without making a purchase. In reality, however, there may be multiple products that can potentially

serve the needs of a customer, in which case, customers may make a choice between the products

and may substitute a product for another one when their favorite product is not available. This

kind of a choice process creates interactions between the demand for the different products, inflating

the demand for an available product when some other product is not available so that customers

satisfy their needs by substituting for the available product. A common question that arises in this

setting is what products to make available to customers so as to maximize the expected revenue,

given that customers choose and substitute according to a particular choice model.

In this paper, we consider assortment optimization problems when customers choose according

to the nested logit model and there is limited capacity for the products in the offered assortment. We

consider a setting where we need to decide which assortment of products to offer. Each arriving

customer chooses among the offered products according to the nested logit model. Under the

nested logit model, the products are organized in nests. Each customer, after viewing the offered

assortment, decides either to make a purchase within one of the nests or to leave the system without

purchasing anything. If a nest is chosen, then the customer purchases one of the products within

the chosen nest. There is a capacity constraint limiting the total capacity consumption of the

1

products in the offered assortment. The goal is to choose an assortment of products to offer so as

to maximize the expected revenue obtained from each customer. We consider two types of capacity

constraints. In the first type of constraints, each product occupies one unit of space, in which case,

the capacity constraint limits the total number of products in the offered assortment. We refer to

this type of a capacity constraint as a cardinality constraint. In the second type of constraints, the

capacity consumption of a product is arbitrary, possibly reflecting the space or capital requirement

of a product. We refer to this type of a capacity constraint as a space constraint.

Under a cardinality constraint, we show that we can obtain an optimal assortment by solving a

linear program with O(m2n) decision variables and O(m2n4) constraints, where m in the number of

nests and n is the number of products in each nest. As far as we are aware, the assortment problem

was not known to be tractable when customers choose according to the nested logit model and there

is a cardinality constraint limiting the total number of products in the offered assortment. This

paper gives the first exact solution method for this problem. On the other hand, under a space

constraint, we show that we can obtain a 4-approximate solution by solving a linear program

with O(m) decision variables and O(mn4) constraints. The running time of this algorithm scales

polynomially with the number of products and the number of nests. To our knowledge, this paper

gives the first algorithm for the assortment problem that scales polynomially with the number of

nests, when there is a capacity constraint on the space consumption of all offered products and

customers choose according to the nested logit model. In addition to giving algorithms to solve

the assortment problem, we give a tractable linear program that computes an upper bound on

the optimal expected revenue. By comparing the expected revenues of the assortments obtained

by our 4-approximation algorithm with the upper bounds on the optimal expected revenues, we

demonstrate that our 4-approximation algorithm performs quite well in practice.

An attractive approach for modeling the customer choice process is to use the utility

maximization principle, where a customer associates a random utility with each product and

chooses the product with the largest utility. Multinomial logit model is one of the popular choice

models that are based on the utility maximization principle where the utilities of the products

are independent of each other; see Luce (1959) and McFadden (1974). Due to the independence

of the utilities of the products, the multinomial logit model implicitly assumes that how highly

a customer evaluates a certain product has nothing to do with how highly the same customer

evaluates another product. The nested logit model remedies this shortcoming by organizing the

products in nests such that the utilities of the products in the same nest can be dependent on each

other; see Train (2003). This feature allows the modeler to capture situations where the products

in the same nest are alike and how highly a customer evaluates a certain product can be a good

indicator of how highly the same customer evaluates another product.

Talluri and van Ryzin (2004) and Gallego et al. (2004) consider revenue management problems

under customer choice behavior. During the course of their analyses, they give efficient

approaches to solve the assortment problem under the multinomial logit model without any

2

constraints. Rusmevichientong et al. (2010), Wang (2012) and Wang (2013) consider assortment

problems under variants of the multinomial logit model with a cardinality constraint on the offered

assortment and show that the problem can be solved efficiently. Bront et al. (2009), Mendez-

Diaz et al. (2010) and Rusmevichientong et al. (2014) consider assortment problems where there

are multiple customer types and customers of different types choose according to multinomial

logit models with different parameters. The authors show that the problem is NP-complete, study

heuristics and investigate valid cuts for integer programming formulations.

Davis et al. (2014) show how to solve the assortment problem under the nested logit model

without any constraints. Li and Rusmevichientong (2014) give a greedy algorithm for the same

problem. Gallego and Topaloglu (2014) study constrained assortment problems under the nested

logit model, but they impose capacity constraints separately on the assortment offered in each

nest. Similar to us, Rusmevichientong et al. (2009) and Desir and Goyal (2013) consider assortment

problems under the nested logit model, where there is a constraint on the total capacity consumption

of the products offered in all nests. They give approximation schemes that tradeoff running time

with solution quality, but the running time for their approaches grows exponentially with the

number of nests. For example, to obtain a 4-approximate solution, Rusmevichientong et al. (2009)

need O(m(m6n6 log(mn))m) operations, which gets prohibitive when m exceeds two or three but

there are practical applications where the number of nests easily exceeds two or three; see Train

et al. (1987), Slade (2009) and Grigolon and Verboren (2014).

As mentioned above, Gallego and Topaloglu (2014) study assortment problems under the nested

logit model, but they impose capacity constraints separately on the assortment offered in each

nest. To understand their constraint structure, consider a retailer that is interested in finding an

assortment of cars to offer to its customers. We model the demand for cars through a nested logit

model, where each car category, such as compact, mid-size and sedan, corresponds to a different

nest. The products within a nest correspond to cars of different models within the car category

corresponding to the nest. The constraint structure in Gallego and Topaloglu (2014) assumes that

there is a separate fixed amount of space reserved for the cars offered in each car category and

the retailer is interested in finding a set of cars to offer such that the set of cars offered in each

car category does not violate the space reserved for that car category. In contrast, we impose a

capacity constraint on the assortment offered over all nests. Thus, our constraint structure assumes

that there is a fixed amount of space available for all car categories and the retailer is interested in

finding a set of cars to offer such that the total amount of space consumed by all offered cars in all

car categories does not violate the space availability.

One line of attack for assortment optimization under the nested logit model has been to identify

a collection of good candidate subsets to offer in each nest. Once these collections are identified, it is

possible to solve a separate linear program to pick a subset to offer in each nest so that the combined

subsets over all nests provide a good assortment. This is the strategy followed by Davis et al.

(2014) and Gallego and Topaloglu (2014). We follow an approach similar to theirs in identifying

3

the collections of candidate subsets in each nest, but due to the fact that our capacity constraint

limits the total capacity consumption of the subsets of products offered in all nests, different nests

interact with each other, making the assortment problem substantially more difficult. The linear

programs used by Davis et al. (2014) and Gallego and Topaloglu (2014) become ineffective and we

cannot build on the earlier work to figure out how to pick a subset to offer in each nest so that the

combined subsets over all nests provide the highest possible expected revenue.

We get around this difficulty by using the following general methodology. The expected

revenue function under the nested logit model is a fraction. We convert the problem of finding

an assortment that maximizes the expected revenue into the problem of finding the fixed point

of a function. Computing the value of this function at any point requires solving an optimization

problem, which involves finding a subset of products to offer in each nest so as to maximize a

nonlinear function. Under a cardinality constraint, we show that we can consider a small number

of candidate subsets in each nest without incurring any loss. Furthermore, we can maximize the

nonlinear function by using dynamic programming. Under a space constraint, we show that we

can consider a small number of candidate subsets in each nest while incurring a constant factor

loss. Furthermore, we can maximize the nonlinear function with a constant factor loss by solving

the linear programming relaxation of a multiple choice knapsack problem.

The discussion in the previous paragraph indicates that our approach is related to maximizing

a fraction. Meggido (1979) shows how to build on a tractable algorithm for a combinatorial

optimization problem with a linear objective function to develop a tractable algorithm for the same

combinatorial optimization problem with a fractional objective function, where the numerator and

the denominator of the fraction are linear. Hashizume et al. (1987) extend this result by showing

how to build on an approximation algorithm for the former problem to give an approximation

algorithm for the latter, but this extension requires the existence of an approximation algorithm

when the linear objective function has negative coefficients. Correa et al. (2010) show how to

drop this requirement. Mittal and Schulz (2013) make generalizations to sums of fractions. One

of the important distinguishing features of our assortment problem is that the objective function

is a fraction where the numerator and the denominator involve nonlinearities. Thus, the general

methods in the papers outlined in this paragraph do not immediately apply.

2 Problem Formulation

In this section, we formulate the assortment optimization problem that we want to solve. There

are m nests indexed by M = {1, . . . ,m}. In each nest, there are n products that we can offer to

customers and we index the products by N = {1, . . . , n}. Although we assume that each nest has

the same number of products, this assumption is only for notational brevity and it is straightforward

to extend our results to the case where different nests have different numbers of products. Under the

nested logit model, a customer decides either to make a purchase within one of the nests or to leave

without purchasing anything. If the customer decides to make a purchase within one of the nests,

4

then the customer chooses one of the products offered in this nest. We let vij be the preference

weight associated with product j in nest i. Given that we offer the assortment Si ⊂ N of products

in nest i, we use Vi(Si) =
∑

j∈Si
vij to denote the total preference weight of the products in the

offered assortment. Under the nested logit model, if we offer the assortment Si in nest i and a

customer has already decided to make a purchase in this nest, then this customer chooses product

j ∈ Si in nest i with probability vij/Vi(Si). We let rij be the revenue associated with product j

in nest i. In this case, given that we offer the assortment Si in nest i and a customer has already

decided to make a purchase in this nest, the expected revenue that we obtain from this customer

can be written as

Ri(Si) =
∑
j∈Si

vij
Vi(Si)

rij =

∑
j∈Si

vij rij

Vi(Si)
.

Associated with each nest, there is a parameter γi ∈ [0, 1] capturing the degree of dissimilarity

between the products in nest i. The preference weight of the no purchase option is v0. Under the

nested logit model, if we offer the assortment (S1, . . . , Sm) over all nests with Si ⊂ N for all i ∈ M ,

then a customer chooses nest i with probability Qi(S1, . . . , Sm) = Vi(Si)
γi/(v0 +

∑
l∈M Vl(Sl)

γl),

which corresponds to the probability that a customer is attracted to nest i as a function of the

assortment (S1, . . . , Sm) offered over all nests. So, if we offer the assortment (S1, . . . , Sm) over all

nests, then we obtain an expected revenue of

Π(S1, . . . , Sm) =
∑
i∈M

Qi(S1, . . . , Sm)Ri(Si) =

∑
i∈M Vi(Si)

γiRi(Si)

v0 +
∑

i∈M Vi(Si)γi

from each customer. Our goal is to find an assortment of products so as to maximize the expected

revenue from each customer, subject to a capacity constraint on the offered assortment.

We consider two types of capacity constraints. In the first type of constraint, we limit the total

number of products offered over all nests to c. Thus, the set of feasible assortments can be written

as {(S1, . . . , Sm) :
∑

i∈M |Si| ≤ c, Si ⊂ N ∀ i ∈ M}. We refer to this constraint as a cardinality

constraint. In the second type of constraint, we let wij be the space requirement of product j in

nest i and limit the total space requirement of the products offered over all nests to c. In this

case, the set of feasible assortments is {(S1, . . . , Sm) :
∑

i∈M
∑

j∈Si
wij ≤ c, Si ⊂ N ∀ i ∈ M}. We

refer to this constraint as a space constraint. For uniformity, we use Ci(Si) to denote the capacity

consumption of the assortment Si offered in nest i. We have Ci(Si) = |Si| under a cardinality

constraint and Ci(Si) =
∑

j∈Si
wij under a space constraint. In this case, we can write the set

of feasible assortments as {(S1, . . . , Sm) :
∑

i∈M Ci(Si) ≤ c, Si ⊂ N ∀ i ∈ M} under capacity or

space constraints. We want to find an assortment that maximizes the expected revenue from each

customer subject to a capacity constraint, yielding the problem

z∗ = max
(S1, . . . , Sm) :∑
i∈M Ci(Si) ≤ c,

Si ⊂ N ∀ i ∈ M

{
Π(S1, . . . , Sm)

}
, (1)

5

where Ci(Si) may correspond to a cardinality or space constraint. If Ci(Si) corresponds to a

cardinality constraint, then we can assume without loss of generality that c is an integer. In this

paper, we show that if we have a cardinality constraint on the offered assortment, then we can

obtain an optimal solution to problem (1) by solving a tractable linear program. On the other

hand, if we have a space constraint, then Lemma 2.1 in Rusmevichientong et al. (2009) shows

that problem (1) is NP-hard even when there is a single nest with a dissimilarity parameter of

one. Therefore, obtaining an optimal solution to problem (1) under a space constraint is likely to

be intractable. In this paper, we show that if we have a space constraint, then we can obtain a

4-approximate solution to problem (1) by solving a tractable linear program.

3 Fixed Point Representation

In this section, we describe the connection of problem (1) to the problem of computing the fixed

point of a function. This connection plays an important role throughout the paper and it becomes

critical for constructing an efficient solution approach for problem (1) under a cardinality or space

constraint. To connect problem (1) to the problem of computing the fixed point of a function, we

define the function f(·) : ℜ+ → ℜ+ as

f(z) = max
(S1, . . . , Sm) :∑
i∈M Ci(Si) ≤ c,

Si ⊂ N ∀ i ∈ M

{∑
i∈M

Vi(Si)
γi(Ri(Si)− z)

}
. (2)

Offering the empty assortment over all nests is a feasible solution to the problem above providing

the objective value of zero, so that f(z) ≥ 0 for all z ∈ ℜ+. Consider a value of ẑ that satisfies

f(ẑ) = v0 ẑ, corresponding to the fixed point of the function f(·)/v0. Such a value of ẑ ≥ 0 always

exists since f(·) is a decreasing function and f(0) ≥ 0. The next theorem shows that the value of

ẑ that satisfies f(ẑ) = v0 ẑ is useful in identifying an optimal solution to problem (1).

Theorem 1 Let ẑ be such that f(ẑ) = v0 ẑ. If the assortment (Ŝ1, . . . , Ŝm) satisfies∑
i∈M

Vi(Ŝi)
γi(Ri(Ŝi)− ẑ) ≥ f(ẑ),

then we have Π(Ŝ1, . . . , Ŝm) ≥ z∗, where z∗ is the optimal objective value of problem (1).

Proof. We claim that z∗ = ẑ. First, we show that z∗ ≥ ẑ. We let (S̃1, . . . , S̃m) be an optimal

solution to problem (2) when we solve this problem with z = ẑ. Thus, we have v0 ẑ = f(ẑ) =∑
i∈M Vi(S̃i)

γi(Ri(S̃i) − ẑ). Focusing on the first and last expressions in this chain of equalities

and solving for ẑ yields ẑ =
∑

i∈M Vi(S̃i)
γiRi(S̃i)/(v0 +

∑
i∈M Vi(S̃i)

γi) = Π(S̃1, . . . , S̃m). Noting

that (S̃1, . . . , S̃m) is a feasible solution to problem (1), we have Π(S̃1, . . . , S̃m) ≤ z∗. Using this

inequality with the last chain of equalities, we obtain z∗ ≥ ẑ. Second, we show that z∗ ≤ ẑ. Using

(S∗
1 , . . . , S

∗
m) to denote an optimal solution to problem (1), we have z∗ = Π(S∗

1 , . . . , S
∗
m) =

6

∑
i∈M Vi(S

∗
i)

γiRi(S
∗
i)/(v0 +

∑
i∈M Vi(S

∗
i)

γi). Focusing on the first and last expressions in this

chain of equalities and solving for z∗, we obtain v0 z
∗ =

∑
i∈M Vi(S

∗
i)

γi(Ri(S
∗
i)− z∗). In this case,

we obtain v0 ẑ = f(ẑ) ≥
∑

i∈M Vi(S
∗
i)

γi(Ri(S
∗
i)− ẑ) ≥

∑
i∈M Vi(S

∗
i)

γi(Ri(S
∗
i)− z∗) = v0 z

∗, where

the first inequality follows by the fact that (S∗
1 , . . . , S

∗
m) is a feasible solution to problem (2) when

we solve this problem with z = ẑ and the second inequality uses the fact that z∗ ≥ ẑ, which is

shown above. The last chain of inequalities indicate that z∗ ≤ ẑ, establishing the claim. Since

f(ẑ) = v0 ẑ, we write the inequality in the theorem as
∑

i∈M Vi(Ŝi)
γi(Ri(Ŝi) − ẑ) ≥ v0 ẑ. Solving

for ẑ in this inequality yields ẑ ≤
∑

i∈M Vi(Ŝi)
γiRi(Ŝi)/(v0 +

∑
i∈M Vi(Ŝi)

γi) = Π(Ŝ1, . . . , Ŝm), in

which case, the desired result follows by noting that ẑ = z∗. �

Theorem 1 suggests the following procedure to obtain an optimal solution to problem (1). We

find ẑ such that f(ẑ) = v0 ẑ and solve problem (2) with z = ẑ to obtain an optimal solution

(Ŝ1, . . . , Ŝm). In this case, it is possible to show that (Ŝ1, . . . , Ŝm) is an optimal solution to problem

(1). To see this result, we have f(ẑ) =
∑

i∈M Vi(Ŝi)
γi(Ri(Ŝi)− ẑ) by the definition of (Ŝ1, . . . , Ŝm),

in which case, (Ŝ1, . . . , Ŝm) satisfies the inequality in Theorem 1 and we obtain Π(Ŝ1, . . . , Ŝm) ≥ z∗.

Since the solution (Ŝ1, . . . , Ŝm) is feasible to problem (2), it is feasible to problem (1) as well and we

have Π(Ŝ1, . . . , Ŝm) ≤ z∗. Therefore, we have Π(Ŝ1, . . . , Ŝm) = z∗, establishing that Π(Ŝ1, . . . , Ŝm)

is an optimal solution to problem (1), as desired. Later in the paper, we show that we can efficiently

find ẑ that satisfies f(ẑ) = v0 ẑ when we have a cardinality constraint. However, finding such ẑ may

be difficult when we have a space constraint. The next corollary gives an approximate version of

Theorem 1 that does not require finding ẑ such that f(ẑ) = v0 ẑ. To state this corollary, we let fR(·)
be an approximation to f(·) that satisfies α fR(z) ≥ f(z) for all z ∈ ℜ+ for some α ≥ 1. We do not

yet specify how to construct this approximation. We only assume that fR(·) is a decreasing function
similar to f(·) and fR(0) ≥ 0, in which case, we can always find ẑ ≥ 0 satisfying fR(ẑ) = v0 ẑ. The

next corollary shows that we can use this value of ẑ to get an approximation guarantee for problem

(1). Its proof is similar to that of Theorem 1 and deferred to Online Appendix A.

Corollary 2 Let fR(·) be an approximation to f(·) that satisfies α fR(z) ≥ f(z) for all z ∈ ℜ+

for some α ≥ 1 and ẑ be such that fR(ẑ) = v0 ẑ. If the assortment (Ŝ1, . . . , Ŝm) satisfies

β
∑
i∈M

Vi(Ŝi)
γi(Ri(Ŝi)− ẑ) ≥ fR(ẑ)

for some β ≥ 1, then we have αβΠ(Ŝ1, . . . , Ŝm) ≥ z∗, where z∗ is the optimal objective value of

problem (1).

4 Cardinality Constraint

In this section, we consider problem (1) under a cardinality constraint. Thus, we have Ci(Si) = |Si|
throughout this section. First, we show how to solve problem (2), which allows us to compute f(z)

at a particular value of z. Second, we show how to find a value of ẑ that satisfies f(ẑ) = v0 ẑ. In

7

this case, noting the discussion that follows Theorem 1, we can find an optimal solution to problem

(1) by finding a value of ẑ that satisfies f(ẑ) = v0 ẑ and solving problem (2) with z = ẑ.

4.1 Computation at a Particular Point

We consider solving problem (2), which allows us to compute f(z) at a particular value of z. The

starting point for our discussion is a result due to Gallego and Topaloglu (2014), who study the

problem of maximizing the expected revenue obtained from each customer subject to a separate

cardinality constraint on the assortment offered in each nest. In particular, for any z ∈ ℜ+ and

bi ∈ Z+, Gallego and Topaloglu (2014) focus on the problem

max
Si : Ci(Si) ≤ bi,

Si ⊂ N

{
Vi(Si)

γi (Ri(Si)− z)
}

= max
Si : |Si| ≤ bi,

Si ⊂ N

{
Vi(Si)

γi (Ri(Si)− z)
}
. (3)

The authors construct O(n2) different orderings of the products such that for any z ∈ ℜ+ and

bi ∈ Z+, an optimal solution to problem (3) can be obtained by sorting the products according to

one of these orderings and using an assortment that includes some number of earliest products

in this ordering. In other words, letting {σg : g ∈ Gi} with |Gi| = O(n2) be the orderings

constructed by Gallego and Topaloglu (2014) and Si(σ
g, k) be the assortment that includes the

first k products when the products in nest i are sorted according to the ordering σg, for any

z ∈ ℜ+ and bi ∈ Z+, an optimal solution to problem (3) can always be found in the collection of

assortments {Si(σ
g, k) : g ∈ Gi, k = 0, . . . , n}. Since |Gi| = O(n2), there are O(n3) assortments in

this collection. For notational brevity, we use Ai = {Sit : t ∈ Ti} with |Ti| = O(n3) to denote the

collection of assortments {Si(σ
g, k) : g ∈ Gi, k = 0, . . . , n} and the next lemma follows.

Lemma 3 There exists a collection of assortments Ai = {Sit : t ∈ Ti} with |Ti| = O(n3) such that

for any z ∈ ℜ+ and bi ∈ Z+, an optimal solution to problem (3) can be found in Ai.

Lemma 3 allows us to focus only on the assortments in the collections A1, . . . ,Am in problem

(2). In particular, we can write problem (2) equivalently as

f(z) = max
(S1, . . . , Sm) :∑
i∈M Ci(Si) ≤ c,

Si ∈ Ai ∀ i ∈ M

{∑
i∈M

Vi(Si)
γi(Ri(Si)− z)

}
. (4)

To see that problems (2) and (4) have the same optimal objective values, we note that problem

(2) allows using assortments of the form (S1, . . . , Sm) with Si ⊂ N for all i, whereas problem (4)

allows using assortments of the form (S1, . . . , Sm) with Si ∈ Ai for all i ∈ M . Therefore, the

optimal objective value of problem (2) is at least as large as the optimal objective value of problem

(4). On the other hand, letting (Ŝ1, . . . , Ŝm) be an optimal solution to problem (2) and Ci(Ŝi) = b̂i,

since (Ŝ1, . . . , Ŝm) is a feasible solution to problem (2), we have
∑

i∈M b̂i =
∑

i∈M Ci(Ŝi) ≤ c. By

8

Lemma 3, the collection of assortments Ai includes an optimal solution to problem (3) for any

z ∈ ℜ+ and bi ∈ Z+. Using this result with bi = b̂i and noting that Ŝi is a feasible solution to

problem (3) when we solve this problem with bi = b̂i, it follows that there exists S̃i ∈ Ai such that

Vi(S̃i)
γi(Ri(S̃i) − z) ≥ Vi(Ŝi)

γi(Ri(Ŝi) − z) and Ci(S̃i) ≤ b̂i. Adding the last two inequalities over

all i ∈ M , we have
∑

i∈M Vi(S̃i)
γi(Ri(S̃i) − z) ≥

∑
i∈M Vi(Ŝi)

γi(Ri(Ŝi) − z) and
∑

i∈M Ci(S̃i) ≤∑
i∈M b̂i ≤ c. Since S̃i ∈ Ai for all i ∈ M , the last two chains of inequalities show that (S̃1, . . . , S̃m)

is a feasible solution to problem (4) and the objective value provided by this solution for problem (4)

is at least as large as the optimal objective value of problem (2). Therefore, the optimal objective

value of problem (4) is at least as large as the optimal objective value of problem (2), establishing

that problems (2) and (4) have the same optimal objective values.

The discussion above indicates that we can compute f(z) at a particular value of z by solving

problem (4), instead of problem (2). However, solving problem (4) in a brute force fashion is still

difficult since there are |A1| × . . .× |Am| different combinations of assortments that we can choose

from different nests and the number of such possible combinations grows exponentially fast with

the number of nests. To solve problem (4) in a tractable fashion, the critical observation is that the

objective function of this problem is separable by the nests. If we offer the assortment Si in nest

i, then we obtain a contribution of Vi(Si)
γi(Ri(Si)− z). Problem (4) finds one assortment to offer

in each nest to maximize the total contribution subject to the constraint that the total cardinality

of the assortments offered over all nests does not exceed c. Therefore, we can solve problem (4)

by using a dynamic program. In this dynamic program, the decision epochs correspond to the

nests. The state variable in each decision epoch is the remaining capacity left from the earlier nests

just before choosing the assortment offered in a particular nest. Finally, the action variable in each

decision epoch is the assortment offered in a particular nest. Thus, we can compute f(z) at a

particular value of z by solving the dynamic program

Ji(b | z) = max
Si : Ci(Si) ≤ b

Si ∈ Ai

{
Vi(Si)

γi(Ri(Si)− z) + Ji+1(b− Ci(Si) | z)

}
, (5)

with the boundary condition Jm+1(· | z) = 0. Under a cardinality constraint, we can assume that

c is an integer that does not exceed mn, which is the total number of products in all of the

nests. Thus, the state space in the dynamic program above is 0, . . . ,mn. Computing the value

functions {Ji(b | z) : b = 0, . . . ,mn, i ∈ M}, the value of J1(c |z) corresponds to f(z).

The dynamic program in (5) provides an efficient approach for computing f(z) at a particular

value of z. Since there are m decision epochs, the state space is 0, . . . ,mn and |Ai| = O(n3),

this dynamic program can be solved in O(m2 n4) operations. In the next section, we build on the

dynamic program to find ẑ that satisfies f(ẑ) = v0 ẑ.

9

4.2 Finding the Fixed Point

We consider the problem of finding ẑ that satisfies f(ẑ) = v0 ẑ. For this purpose we use the linear

programming representation of the dynamic program in (5). A dynamic program with finite states

and actions has a linear programming representation. In this linear program, there is one decision

variable for each state and decision epoch corresponding to the value function at each state and

decision epoch. Inspired by this linear program, we propose solving

min Θ1(c) (6)

st Θi(b) ≥ Vi(Si)
γi(Ri(Si)− z) + Θi+1(b− Ci(Si)) ∀ i ∈ M, b = 0, . . . ,mn, Si ∈ Fi(b) (7)

Θ1(c) = v0 z, (8)

to find ẑ satisfying f(ẑ) = v0 ẑ. The decision variables are Θ = {Θi(b) : i ∈ M, b = 0, . . . ,mn} and

z in the linear program above. We use the convention that Θm+1(b) = 0 for all b = 0, . . . ,mn. The

set Fi(b) is given by Fi(b) = {Si : Ci(Si) ≤ b, Si ∈ Ai}, capturing the set of feasible actions at

decision epoch i and state b. If we drop the second constraint in problem (6)-(8) and minimize the

objective function subject to the first set of constraints for a fixed value of z, then it is well known

that the optimal value of the decision variable Θ1(c) gives the value function J1(b | z) computed

through the dynamic program in (5); see Puterman (1994). Interestingly, if we solve problem

(6)-(8) as formulated, then the optimal value of the decision variable z gives the value of ẑ satisfying

f(ẑ) = v0 ẑ. The next theorem shows this result.

Theorem 4 Letting (Θ̂, ẑ) be an optimal solution to problem (6)-(8), ẑ satisfies f(ẑ) = v0 ẑ.

Proof. We let (Ŝ1, . . . , Ŝm) be an optimal solution to problem (2) when we solve this problem with

z = ẑ. We define {b̂i : i ∈ M} as b̂1 = c and b̂i+1 = b̂i − Ci(Ŝi) so that b̂i corresponds to the total

capacity consumption of the assortment (Ŝ1, . . . , Ŝm) in nests 1, . . . , i− 1. Since (Θ̂, ẑ) is a feasible

solution to problem (6)-(8), it satisfies the first set of constraints for state and action (b̂i, Ŝi) for all

i ∈ M . So, we have Θ̂i(b̂i) ≥ Vi(Ŝi)
γi (Ri(Ŝi) − ẑ) + Θ̂i+1(b̂i − Ci(Ŝi)) for all i ∈ M . Noting that

b̂i+1 = b̂i−Ci(Ŝi), adding these inequalities gives v0 ẑ = Θ̂1(c) ≥
∑

i∈M Vi(Ŝi)
γi (Ri(Ŝi)− ẑ) = f(ẑ),

where the first equality uses the fact that (Θ̂, ẑ) satisfies the second constraint in problem (6)-(8)

and the second equality is by the definition of (Ŝ1, . . . , Ŝm). So, we have v0 ẑ ≥ f(ẑ). To get a

contradiction, assume that v0 ẑ > f(ẑ) in the rest of the proof and let z̃ be such that f(z̃) = v0 z̃.

Compute the value functions J(z̃) = {Ji(b | z̃) : i ∈ M, b = 0, . . . ,mn} through the dynamic

program in (5) with z = z̃. Noting the way the value functions are computed in (5), we have

Ji(b | z̃) ≥ Vi(Si)
γi(Ri(Si) − z̃) + Ji+1(b − Ci(Si) | z̃) for all i ∈ M , b = 0, . . . ,mn and Si ∈ Ai

such that Ci(Si) ≤ b, which indicates that (J(z̃), z̃) satisfies the first set of constraints in problem

(6)-(8). Furthermore, we know that J1(c | z̃) provides the optimal objective value of problem (4)

when this problem is solved with z = z̃, so that J1(c | z̃) = f(z̃) = v0 z̃. Thus, the solution (J(z̃), z̃)

satisfies the second constraint in problem (6)-(8) as well. The optimal objective value Θ̂1(c) of

10

problem (6)-(8) must be no larger than the objective value J1(c | z̃) at the feasible solution (J(z̃), z̃),

implying v0 ẑ = Θ̂1(c) ≤ J1(c | z̃) = v0 z̃. So, we obtain f(ẑ) < v0 ẑ ≤ v0 z̃ = f(z̃), but since f(·) is
decreasing, we cannot have v0 ẑ ≤ v0 z̃ and f(ẑ) < f(z̃), yielding a contradiction. �

To sum up, we can solve the linear program in (6)-(8) to obtain ẑ satisfying f(ẑ) = v0 ẑ. Since

|Fi(b)| ≤ |Ai| = O(n3), there are O(m2n) decision variables and
∑

i∈M O(mn|Ai|) = O(m2n4)

constraints in this linear program. Once we have ẑ, noting the discussion that follows Theorem

1, we can solve problem (4) with z = ẑ to obtain an optimal solution to problem (1). To solve

problem (4) with z = ẑ, we can use the dynamic program in (5). The dynamic program in (5) can

be solved in O(m2 n4) operations and the computational effort for solving this dynamic program is

negligible when compared with that for solving the linear program in (6)-(8).

5 Space Constraint

In this section, we consider problem (1) under a space constraint. Thus, we have Ci(Si) =
∑

j∈Si
wij

throughout this section. First, we show how to construct an approximation fR(·) to f(·) such that

2 fR(z) ≥ f(z) for all z ∈ ℜ+. Second, we show how to find ẑ satisfying fR(ẑ) = v0 ẑ. Third, we

show how to find an assortment (Ŝ1, . . . , Ŝm) such that 2
∑

i∈M Vi(Ŝi)
γi(Ri(Ŝi)− ẑ) ≥ fR(ẑ) and∑

i∈M Ci(Ŝi) ≤ c. In this case, we obtain 4Π(Ŝ1, . . . , Ŝm) ≥ z∗ by Corollary 2 and (Ŝ1, . . . , Ŝm) is a

feasible solution to problem (1). Therefore, it follows that (Ŝ1, . . . , Ŝm) is a 4-approximate solution

to problem (1) under a space constraint.

5.1 Approximation at a Particular Point

We consider constructing an approximation fR(·) to f(·) that satisfies 2 fR(z) ≥ f(z) for all

z ∈ ℜ+. Similar to our development under the cardinality constraint, the construction of our

approximation to f(·) builds on a result that is due to Gallego and Topaloglu (2014). In addition

to a separate cardinality constraint on the assortment offered in each nest, the authors study the

problem of maximizing the expected revenue obtained from each customer subject to a separate

space constraint on the assortment offered in each nest. Within this setting, for any z ∈ ℜ+ and

bi ∈ ℜ+, Gallego and Topaloglu (2014) focus on the problem

max
Si : Ci(Si) ≤ bi,

Si ⊂ N

{
Vi(Si)

γi (Ri(Si)− z)
}

= max
Si :

∑
j∈Si

wij ≤ bi,

Si ⊂ N

{
Vi(Si)

γi (Ri(Si)− z)
}
. (9)

The authors construct O(n2) different orderings between the products such that for any z ∈ ℜ+

and bi ∈ ℜ+, a 2-approximate solution to problem (9) can be obtained by sorting the products

according to one of these orderings, dropping the products whose space consumption exceeds bi

from consideration and using an assortment that includes some number of earliest products in this

ordering. In other words, we use {σg : g ∈ Gi} with |Gi| = O(n2) to denote the orderings constructed

by Gallego and Topaloglu (2014) and Si(σ
g, k, bi) to denote the assortment that includes the first k

products when the products in nest i are sorted according to the ordering σg and the products whose

11

space consumption exceeds bi are dropped from consideration. In this case, Gallego and Topaloglu

(2014) show that for any z ∈ ℜ+ and bi ∈ ℜ+, a 2-approximate solution to problem (9) can always

be found in the collection of assortments {Si(σ
g, k, bi) : σg ∈ Gi, k = 0, . . . , n, bi ∈ ℜ+}. A

critical observation is that we can consider only bi ∈ {wi1, . . . , win}, rather than bi ∈ ℜ+, without

changing the collection of assortments {Si(σ
g, k, bi) : σg ∈ Gi, k = 0, . . . , n, bi ∈ ℜ+}, since if

bi takes a value other than {wi1, . . . , win}, then we can decrease the value of bi to the closest

element in {wi1, . . . , win} without changing the set of products whose space consumptions exceed

bi. Therefore, noting that |Gi| = O(n2) and we can consider only bi ∈ {wi1, . . . , win}, there are

O(n4) assortments in the collection {Si(σ
g, k, bi) : σ

g ∈ Gi, k = 0, . . . , n, bi ∈ ℜ+}. For notational

brevity, we use Ai = {Sit : t ∈ Ti} with |Ti| = O(n4) to denote the collection of assortments

{Si(σ
g, k, bi) : g ∈ Gi, k = 0, . . . , n, bi ∈ ℜ+} and obtain the next lemma. This lemma becomes

useful when constructing our approximation fR(·) to f(·).

Lemma 5 There exists a collection of assortments Ai = {Sit : t ∈ Ti} with |Ti| = O(n4) such that

for any z ∈ ℜ+ and bi ∈ ℜ+, a 2-approximate solution to problem (9) can be found in Ai.

We construct our approximation to f(·) by focusing only on the assortments in the collections

A1, . . . ,Am. Using the decision variables x = {xi(Si) : i ∈ M, Si ∈ Ai}, we define fR(·) as

fR(z) = max
∑
i∈M

∑
Si∈Ai

Vi(Si)
γi(Ri(Si)− z)xi(Si) (10)

st
∑
i∈M

∑
Si∈Ai

Ci(Si)xi(Si) ≤ c (11)

∑
Si∈Ai

xi(Si) = 1 ∀ i ∈ M (12)

xi(Si) ≥ 0 ∀ i ∈ M, Si ∈ Ai, (13)

which corresponds to the optimal objective value of a linear program with
∑

i∈M O(|Ai|) = O(mn4)

decision variables and O(m) constraints. In problem (2), each assortment Si offered in nest i

provides a contribution of Vi(Si)
γi(Ri(Si)− z). This problem finds one assortment Si ⊂ N to offer

in each nest i such that the total contribution over all nests is maximized and the total capacity

consumption over all nests does not exceed c. Similarly, each assortment Si offered in nest i provides

a contribution of Vi(Si)
γi(Ri(Si)− z) in problem (10)-(13). If we impose integrality constraints on

the decision variables in problem (10)-(13), then noting the second set of constraints, this problem

finds one assortment Si ∈ Ai to offer in each nest i such that the total contribution over all nests

in maximized and the total capacity consumption over all nests does not exceed c. We note that

fR(z) is decreasing in z. Also, we assume that Ci(Si) ≤ c for all i ∈ M and Si ∈ Ai. If Ci(Si) > c

for some i ∈ M and Si ∈ Ai, then we can drop this assortment from Ai since using this assortment

in problem (1) would yield an infeasible solution.

It is possible to use Lemma 5 to show that our approximation fR(·) to f(·) satisfies 2 fR(z) ≥
f(z) for all z ∈ ℜ+. To see this result, we let (Ŝ1, . . . , Ŝm) be an optimal solution to problem

12

(2) and b̂i = Ci(Ŝi). Since (Ŝ1, . . . , Ŝm) is a feasible solution to problem (2), we have
∑

i∈M b̂i =∑
i∈M Ci(Ŝi) ≤ c. Lemma 5 indicates that the collection of assortmentsAi includes a 2-approximate

solution to problem (9) for any z ∈ ℜ+ and bi ∈ ℜ+. Using this result with bi = b̂i and noting

the fact that Ŝi is a feasible solution to problem (9) when this problem is solved with bi = b̂i,

it follows that there exists S̃i ∈ Ai such that 2Vi(S̃i)
γi(Ri(S̃i) − z) ≥ Vi(Ŝi)

γi(Ri(Ŝi) − z) and

Ci(S̃i) ≤ b̂i. Adding the last two inequalities over all i ∈ M , we have 2
∑

i∈M Vi(S̃i)
γi(Ri(S̃i)− z) ≥∑

i∈M Vi(Ŝi)
γi(Ri(Ŝi)− z) and

∑
i∈M Ci(S̃i) ≤

∑
i∈M b̂i ≤ c.

To obtain the desired result, we define the solution x̃ to problem (10)-(13) as x̃i(S̃i) = 1 for

all i ∈ M and x̃i(Si) = 0 for all i ∈ M and Si ∈ Ai \ {S̃i}. The solution x̃ is feasible to problem

(10)-(13) since the definition of x̃ implies that
∑

i∈M
∑

Si∈Ai
Ci(Si) x̃i(Si) =

∑
i∈M Ci(S̃i) ≤ c

and
∑

Si∈Ai
x̃i(Si) = x̃i(S̃i) = 1. Furthermore, the objective value provided by the solution x̃ for

problem (10)-(13) satisfies
∑

i∈M
∑

Si∈Ai
Vi(Si)

γi(Ri(Si)−z) x̃i(Si) =
∑

i∈M Vi(S̃i)
γi(Ri(S̃i)−z) ≥∑

i∈M Vi(Ŝi)
γi(Ri(Ŝi)− z)/2 = f(z)/2, where the first equality follows from the definition of x̃, the

inequality uses the fact that 2
∑

i∈M Vi(S̃i)
γi(Ri(S̃i)− z) ≥

∑
i∈M Vi(Ŝi)

γi(Ri(Ŝi)− z) shown in the

previous paragraph and the second equality is by the fact that (Ŝ1, . . . , Ŝm) is an optimal solution

to problem (2). Thus, there exists a feasible solution to problem (10)-(13) providing an objective

value for this problem that is at least f(z)/2, which implies that the optimal objective value fR(z)

of problem (10)-(13) satisfies fR(z) ≥ f(z)/2, establishing the desired result.

5.2 Finding the Fixed Point

We consider the problem of finding the value of ẑ that satisfies fR(ẑ) = v0 ẑ. Noting that fR(z)

is given by the optimal objective value of the linear program in (10)-(13), we use the dual of this

problem to find the value of ẑ that satisfies fR(ẑ) = v0 ẑ. In particular, associating the dual

variables ∆ and y = {yi : i ∈ M} respectively with the two sets of constraints in problem (10)-(13),

we propose solving the linear program

min c∆+
∑
i∈M

yi (14)

st Ci(Si)∆ + yi ≥ Vi(Si)
γi(Ri(Si)− z) ∀ i ∈ M, Si ∈ Ai (15)

c∆+
∑
i∈M

yi = v0 z (16)

∆ ≥ 0, yi is free, z is free ∀ i ∈ M (17)

to find ẑ satisfying fR(ẑ) = v0 ẑ. The decision variables are ∆, y and z in the problem above. If

we drop the second constraint in problem (14)-(17) and minimize the objective function subject

to the first set of constraints for a fixed value of z, then this problem corresponds to the dual of

problem (10)-(13). With the second constraint added, problem (14)-(17) allows us to find ẑ that

satisfies fR(ẑ) = v0 ẑ, as shown in the next theorem.

Theorem 6 Letting (∆̂, ŷ, ẑ) be an optimal solution to problem (14)-(17), ẑ satisfies fR(ẑ) = v0 ẑ.

13

Proof. Associating the dual variables ∆ and y = {yi : i ∈ M} with the two sets of constraints in

problem (10)-(13), the dual of this problem is

fR(z) = min c∆+
∑
i∈M

yi (18)

st Ci(Si)∆ + yi ≥ Vi(Si)
γi(Ri(Si)− z) ∀ i ∈ M, Si ∈ Ai (19)

∆ ≥ 0, yi is free ∀ i ∈ M. (20)

Therefore, the solution (∆̂, ŷ) is feasible to problem (18)-(20) when we solve this problem with

z = ẑ, which implies that fR(ẑ) ≤ c ∆̂ +
∑

i∈M ŷi = v0 ẑ, where the equality follows from the

fact that (∆̂, ŷ, ẑ) is a feasible solution to problem (14)-(17). To get a contradiction, assume that

the last inequality is strict so that fR(ẑ) < v0 ẑ. We let z̃ be such that fR(z̃) = v0 z̃ and (∆̃, ỹ)

be an optimal solution to problem (18)-(20) when we solve this problem with z = z̃. Thus, we

get v0 z̃ = fR(z̃) = c ∆̃ +
∑

i∈M ỹi, which indicates that (∆̃, ỹ, z̃) is a feasible solution to problem

(14)-(17). In this case, it follows that v0 z̃ = fR(z̃) = c ∆̃+
∑

i∈M ỹi ≥ c ∆̂+
∑

i∈M ŷi = v0 ẑ > fR(ẑ),

where the first inequality is by the fact that (∆̃, ỹ, z̃) is a feasible, but not necessarily an optimal

solution to problem (14)-(17). The last chain of inequalities yields v0 z̃ ≥ v0 ẑ and fR(z̃) > fR(ẑ),

which contradict the fact that fR(·) is a decreasing function. �

5.3 Construction of an Approximate Assortment

By the earlier discussion in this section, our approximation fR(·) to f(·) satisfies 2 fR(z) ≥ f(z)

for all z ∈ ℜ+. Furthermore, we can find the value of ẑ that satisfies fR(ẑ) = v0 ẑ by solving the

linear program in (14)-(17). In the remainder of this section, we consider the problem of finding an

assortment (Ŝ1, . . . , Ŝm) such that 2
∑

i∈M Vi(Ŝi)
γi(Ri(Ŝi) − ẑ) ≥ fR(ẑ) and

∑
i∈M Ci(Ŝi) ≤ c. In

this case, Corollary 2 implies that we have 4Π(Ŝ1, . . . , Ŝm) ≥ z∗ and (Ŝ1, . . . , Ŝm) is a feasible

solution to problem (1). So, (Ŝ1, . . . , Ŝm) is a 4-approximate solution to problem (1).

It is a simple exercise in linear programming duality to show that any basic optimal solution to

problem (10)-(13) includes at most two fractional components; see Sinha and Zoltners (1979). We

let x̂ be a basic optimal solution to problem (10)-(13) when we solve this problem with z = ẑ. We

make two observations. First, if x̂i′(Pi′) ∈ (0, 1] for some nest i′ ∈ M and assortment Pi′ ∈ Ai′ ,

then noting the second set of constraints in problem (10)-(13), there must be some other assortment

Qi′ ∈ Ai′ such that x̂i′(Qi′) ∈ [0, 1) as well. Second, since x̂ has as most two fractional components,

there can be no other fractional component of x̂. In this case, noting the second set of constraints

in problem (10)-(13) once more, it follows that for each nest i ∈ M \ {i′}, there exists a single

assortment S̃i such that x̂i(S̃i) = 1. Therefore {x̂i(S̃i) : i ∈ M \ {i′}} ∪ {x̂i′(Pi′)} ∪ {x̂i′(Qi′)}
includes all components of x̂ taking strictly positive values.

In the rest of the discussion, we assume that the basic optimal solution x̂ has two fractional

components. In particular, noting the second set of constraints in problem (10)-(13), x̂ cannot have

one fractional component and the result holds in a straightforward fashion when x̂ has no fractional

14

components. As described in the previous paragraph, if the basic optimal solution x̂ to problem

(10)-(13) has two fractional components, then there exist some nest i′ ∈ M and assortments

Pi′ , Qi′ ∈ Ai′ such that x̂i′(Pi′), x̂i′(Qi′) ∈ (0, 1) and there is no other fractional component of

x̂. Without loss of generality, we assume that Ci′(Pi′) ≤ Ci′(Qi′). Furthermore, for each nest

i ∈ M \ {i′}, there exists a single assortment S̃i such that x̂i(S̃i) = 1. Using the solution x̂,

we construct two assortments (Ŝ1
1 , . . . , Ŝ

1
m) and (Ŝ2

1 , . . . , Ŝ
2
m) as follows. The first one of these

assortments is constructed as (Ŝ1
1 , . . . , Ŝ

1
m) = (S̃1, . . . S̃i′−1, Pi′ , S̃i′+1, . . . , S̃m). In other words, the

assortment (Ŝ1
1 , . . . , Ŝ

1
m) uses the components of the solution x̂ that take value one, along with the

fractional component of the solution x̂ with the smaller capacity consumption. We construct the

second assortment as (Ŝ2
1 , . . . , Ŝ

2
m) = (∅, . . . , ∅, Qi′ , ∅, . . . , ∅), offering the subset Qi′ in nest i′, but

offering empty subsets in all of the other nests. A crucial observation is that the two assortments

(Ŝ1
1 , . . . , Ŝ

1
m) and (Ŝ2

1 , . . . , Ŝ
2
m) as defined above collectively include all components of the solution

x̂ = {x̂i(Si) : i ∈ M, Si ∈ Ai} taking a strictly positive value. In this case, we get

fR(ẑ) =
∑
i∈M

∑
Si∈Ai

Vi(Si)
γi(Ri(Si)− ẑ) x̂i(Si) ≤

∑
i∈M

Vi(Ŝ
1
i)

γi(Ri(Ŝ
1
i)− ẑ) +

∑
i∈M

Vi(Ŝ
2
i)

γi(Ri(Ŝ
2
i)− ẑ)

≤ 2 max

{∑
i∈M

Vi(Ŝ
1
i)

γi(Ri(Ŝ
1
i)− ẑ),

∑
i∈M

Vi(Ŝ
2
i)

γi(Ri(Ŝ
2
i)− ẑ)

}
,

where the first inequality is by the fact that if x̂i(Si) > 0 for some i ∈ M and Si ∈ Ai, then

we have Si = Ŝ1
i or Ŝi = Ŝ2

i . Therefore, the chain of inequalities above shows that if we choose

(Ŝ1, . . . , Ŝm) as one of the assortments (Ŝ1
1 , . . . , Ŝ

1
m) and (Ŝ2

1 , . . . , Ŝ
2
m), then (Ŝ1, . . . , Ŝm) satisfies

2
∑

i∈M Vi(Ŝi)
γi(Ri(Ŝi)− ẑ) ≥ fR(ẑ). Furthermore, we note that both of the solutions (Ŝ1

1 , . . . , Ŝ
1
m)

and (Ŝ2
1 , . . . , Ŝ

2
m) are feasible to problem (1). The solution (Ŝ2

1 , . . . , Ŝ
2
m) is feasible since this solution

only offers Qi′ in nest i′ and we have
∑

i∈M Ci(Ŝ
2
i) = Ci′(Qi′) ≤ c, where the last inequality

uses the assumption that Ci(Si) ≤ c for all i ∈ M and Si ∈ Ai. To see the feasibility of the

solution (Ŝ1
1 , . . . , Ŝ

1
m) to problem (1), we observe that

∑
i∈M Ci(Ŝ

1
i) =

∑
i∈M\{i′}Ci(S̃i)+Ci′(Pi′) ≤∑

i∈M\{i′}Ci(S̃i) + Ci′(Pi′) x̂i′(Pi′) + Ci′(Qi′) x̂i′(Qi′) =
∑

i∈M
∑

Si∈Ai
Ci(Si) x̂i(Si) ≤ c, where the

first inequality uses the fact that Ci′(Pi′) ≤ Ci′(Qi′) and x̂i′(Pi′)+ x̂i′(Qi′) = 1 by the second set of

constraints in problem (10)-(13) and the second equality uses the fact that {x̂i(S̃i) : i ∈ M \ {i′}}∪
{x̂i′(Pi′)} ∪ {x̂i′(Qi′)} correspond to all components of x̂ taking strictly positive values.

To sum up, we can solve the linear program in (14)-(17) to find ẑ satisfying fR(ẑ) = v0 ẑ. This

linear program has O(m) decision variables and
∑

i∈M O(|Ai|) = O(mn4) constraints. Once

we have ẑ, we can solve problem (10)-(13) with z = ẑ to obtain an optimal solution x̂ and

construct the assortments (Ŝ1
1 , . . . , Ŝ

1
m) and (Ŝ2

1 , . . . , Ŝ
2
m) as in the previous paragraph. If we choose

(Ŝ1, . . . , Ŝm) as one of the assortments (Ŝ1
1 , . . . , Ŝ

1
m) and (Ŝ2

1 , . . . , Ŝ
2
m), then (Ŝ1, . . . , Ŝm) satisfies

2
∑

i∈M Vi(Ŝi)
γi(Ri(Ŝi)− ẑ) ≥ fR(ẑ) and (Ŝ1, . . . , Ŝm) is a feasible solution to problem (1). Since

our approximation fR(·) to f(·) satisfies 2 fR(z) ≥ f(z) for all z ∈ ℜ+, by Corollary 2, we obtain

4Π(Ŝ1, . . . , Ŝm) ≥ z∗, so that (Ŝ1, . . . , Ŝm) is a 4-approximate solution to problem (1). Thus, if we

check the expected revenue provided by each one of the assortments (Ŝ1
1 , . . . , Ŝ

1
m) and (Ŝ2

1 , . . . , Ŝ
2
m)

for problem (1) and pick the best one, then we obtain a 4-approximate solution to problem (1).

15

6 Numerical Experiments

In this section, our goal is to numerically test the performance of the 4-approximation algorithm

described in Section 5. Since we can obtain the optimal solution to problem (1) when we have a

cardinality constraint, we do not provide numerical experiments under a cardinality constraint.

6.1 Numerical Setup

In our numerical experiments, we randomly generate a large number of problem instances. We

generate each problem instance by using the following procedure. We set the number of nests as

m = 3 or m = 5 and the number of products in each nest as n = 15 or n = 30. To come up with

the revenues and preference weights of the products, we sample Cij from the uniform distribution

over [0, 1]. Similarly, we sample Xij and Yij from the uniform distribution over [0.75, 1.25]. We

set the revenue and preference weight of product j in nest i respectively as rij = 10 × C2
ij × Xij

and vij = 10 × (1 − Cij) × Yij . Through Cij , we ensure that the products having larger revenues

generally tend to have smaller preference weights, indicating more expensive products tend to be

less attractive. Squaring Cij in the expression for rij skews the distribution of the revenues so that

we have a small number of products with large revenues. Through Xij and Yij , we incorporate

idiosyncratic noise into the revenues and preference weights so that not all products with large

revenues have small preference weights. We sample the dissimilarity parameter γi for each nest i

from the uniform distribution over [0.25, 0.75]. We set the preference weight v0 of the no purchase

option such that the probability of no purchase is 0.4 even when we offer all products in all nests. We

sample the space requirement wij of product j in nest i from the uniform distribution over [1, 10]. We

set the capacity availability as c = κ
∑

i∈M
∑

j∈N wij , corresponding to a κ fraction of the total

space consumption of all products in all nests. We use κ = 0.1, κ = 0.15 or κ = 0.2.

We vary (m,n, κ) over {3, 5} × {15, 30} × {0.1, 0.15, 0.2} to get 12 parameter combinations. In

each parameter combination, we generate 5,000 individual problem instances by using the approach

in the previous paragraph. For each problem instance, we use the approach in Section 5 to obtain

a 4-approximate solution. In Online Appendix B, we also give a linear program that provides an

upper bound on the optimal expected revenue for a particular problem instance. To assess the

quality of the 4-approximate solution, we check the gap between the expected revenue from the

4-approximate solution and the upper bound on the optimal expected revenue.

6.2 Numerical Results

Our numerical results are given in Table 1. The first column in this table shows the parameter

combinations by using (m,n, κ). We recall that we generate 5,000 individual problem instances in

each parameter combination. For each problem instance, we use the approach in Section 5 to obtain

a 4-approximate solution to problem (1). We use Revp to denote the expected revenue obtained

by the 4-approximate solution for problem instance p. Using Bndp to denote the upper bound on

16

the optimal total expected revenue for problem instance p, the second column in Table 1 gives the

average percent gap between Revp and Bndp, where average is taken over all 5,000 problem instances

in a parameter combination. The third and fourth columns respectively give the 95th percentile

and maximum of the percent gaps between Revp and Bndp over all 5,000 problem instances in a

particular parameter combination. Thus, the second, third and fourth columns respectively give the

average, 95th percentile and maximum of the data {100×(Bndp−Revp)/Bndp : p = 1, . . . , 5,000}. In
this way, these columns give an indication of the optimality gaps of the 4-approximate solutions. The

fifth column gives the number of products in the 4-approximate solution, averaged over all 5,000

problem instances. The sixth column gives the number of problem instances for which the percent

gap between Revp and Bndp is less than 1%. Similarly, the seventh, eighth and ninth columns give

the number of problem instances where the percent gap between Revp and Bndp is respectively less

than 2.5%, 5% and 10%. The tenth and eleventh columns attempt to give a feel for the tightness

of the space constraint. The tenth column shows the average number of products in the optimal

assortment when there are no space constraints. The eleventh column shows the number of problem

instances for which this unconstrained solution violates the space constraint. For comparison, we

also use a greedy algorithm to obtain a heuristic solution to problem (1). The greedy algorithm

starts with the empty assortment, finds the product that provides the largest improvement in the

expected revenue per unit of space consumption and adds this product to the assortment, until

there is no available space or no improvement in the expected revenue. The twelfth, thirteenth and

fourteenth columns respectively show the average, 95th percentile and maximum of the percent

gaps between the expected revenue obtained by the greedy algorithm and the upper bound on

the optimal expected revenue. So, using Grep to denote the expected revenue obtained by the

greedy algorithm for problem instance p, these three columns show the average, 95th percentile

and maximum of the data {100× (Bndp − Grep)/Bndp : p = 1, . . . , 5,000}.

Our results indicate that our 4-approximation algorithm performs quite well. Over all problem

instances, the average optimality gap of this algorithm is no larger than 1.56%. In 58,034 out of all

60,000 problem instances, the optimality gaps of the 4-approximate solutions are less than 5%. As a

general trend, the optimality gaps tend to get smaller as κ gets larger. As κ gets larger, the capacity

availability gets larger and each product occupies a smaller fraction of the available capacity. So,

problem instances where each product occupies a smaller fraction of the available capacity appear to

be easier to approximate. This observation is aligned with the intuition that the linear programming

relaxation of a knapsack problem becomes tighter as each item occupies a smaller fraction of the

knapsack capacity. In particular, it is known that if each item occupies no larger than a fraction

ϵ of the knapsack capacity, then the optimal objective value of the linear programming relaxation

exceeds the optimal objective value of a knapsack problem by at most a factor of 1/(1 − ϵ). The

most problematic parameter combination in Table 1 is (3, 15, 0.1), corresponding to a small value of

κ with κ = 0.1. Even for this parameter combination, in more than 75% of the problem instances,

the optimality gap of the 4-approximate solution is no larger than 5%. Also, we note that the

reported optimality gaps are pessimistic estimates, since these optimality gaps are obtained by

17

Param. % Gap btw. Avg. No. Prob. with Certain Uncn. No. % Gap btw.
Combin. Revp, Bndp Assr. % Gap btw. Revp, Bndp Assr. Capac. Grep, Bndp

(m,n, κ) Avg. 95th Max. Size 1% 2.5% 5% 10% Size Prbs. Avg. 95th Max.

(3, 15, 0.20) 1.48 3.86 8.68 9.89 2,196 4,090 4,939 5,000 17.02 4,899 2.78 8.16 28.11
(3, 15, 0.15) 2.21 5.62 14.36 8.06 1,423 3,258 4,610 4,996 17.02 4,985 3.46 9.61 31.87
(3, 15, 0.10) 3.35 8.38 21.53 6.13 861 2,322 3,875 4,898 17.02 4,999 4.51 11.57 36.78
(3, 30, 0.20) 0.82 1.95 4.95 20.09 3,430 4,924 5,000 5,000 33.45 4,941 1.43 4.35 13.25
(3, 30, 0.15) 1.19 2.75 7.78 16.36 2,464 4,622 4,996 5,000 33.45 4,996 1.82 5.35 15.07
(3, 30, 0.10) 1.79 4.06 7.36 12.45 1,551 3,740 4,926 5,000 33.45 5,000 2.39 6.55 17.50
(5, 15, 0.20) 1.05 2.34 5.18 16.88 2,776 4,828 4,999 5,000 28.47 4,982 2.31 6.03 13.70
(5, 15, 0.15) 1.54 3.41 6.05 13.78 1,798 4,163 4,987 5,000 28.47 4,999 2.83 7.00 15.10
(5, 15, 0.10) 2.26 5.16 10.33 10.53 1,086 3,196 4,704 4,999 28.47 5,000 3.44 8.13 17.30
(5, 30, 0.20) 0.68 1.37 4.52 33.82 4,097 4,992 5,000 5,000 56.06 4,993 1.30 3.27 7.75
(5, 30, 0.15) 0.96 1.88 3.96 27.57 3,010 4,972 5,000 5,000 56.06 5,000 1.63 3.99 9.70
(5, 30, 0.10) 1.35 2.73 5.09 21.04 1,907 4,606 4,998 5,000 56.06 5,000 2.03 4.87 13.53

Avg./Total 1.56 3.63 8.32 26,599 49,713 58,034 59,893 2.49 6.57 18.30

Table 1: Performance of the 4-approximate solutions and the greedy algorithm on 5,000 randomly
generated problem instances.

comparing the expected revenue from an assortment with an upper bound on the optimal expected

revenue, rather than the optimal expected revenue itself. The greedy algorithm performs noticeably

worse than the 4-approximation. There are parameter combinations such as (3, 15, 0.20), where the

95th percentile of the optimality gaps from the 4-approximation algorithm is 3.86%, but the 95th

percentile of the optimality gaps from the greedy algorithm is 8.16%. The running times for the

4-approximation algorithm are reasonable. We use Java 1.6.033 on an Intel Xeon 2.00 GHz CPU

and Gurobi 5.1.0 as the linear programming solver. For the largest problem instances with m = 5

and n = 30, the average running time for the 4-approximation algorithm is 3.56 seconds.

7 Conclusions

We gave tractable methods to solve assortment problems under the nested logit model when there

is a cardinality or space constraint on the assortment offered over all nests. As a direction for

future research, the 4-approximation algorithm does not provide any guidance as to how we

can obtain better solutions if we are willing to increase the computational effort. Gallego and

Topaloglu (2014) show how to generate candidate assortments that tradeoff running time with

solution quality. Furthermore, Frieze and Clarke (1984) develop approximations to multiple choice

knapsack problems that tradeoff running time with solution quality. It is interesting to see whether

we can join these two approaches to develop an approximation algorithm for the assortment problem

under a space constraint that tradeoff running time with solution quality.

Acknowledgements

We thank the area editor, the associate editor and the two anonymous referees for their valuable

comments that improved the paper in many ways. This work was supported in part by National

Science Foundation grants CMII 0969113 and CMII 1433398.

18

Author Biographies

Jacob B. Feldman is a Ph.D. student in the School of Operations Research and Information

Engineering at Cornell University. He expects to receive his Ph.D. in summer 2015. In fall 2015, he

will join Olin Business School in Washington University at St. Louis as an assistant professor. His

research interests include customer choice modeling and approximation algorithms for combinatorial

optimization problems.

Huseyin Topaloglu is a professor in the School of Operations Research and Information

Engineering at Cornell University. He holds a Ph.D. in Operations Research and Financial

Engineering from Princeton University. His research interests include stochastic programming

and approximate dynamic programming with applications in revenue management, pricing and

inventory control.

References

Bront, J. J. M., Mendez-Diaz, I. and Vulcano, G. (2009), ‘A column generation algorithm for
choice-based network revenue management’, Operations Research 57(3), 769–784.

Correa, J. R., Fernandes, C. G. and Wakabayashi, Y. (2010), ‘Approximating a class of
combinatorial problems with rational objective function’, Mathematical Programming 124(1-
2), 255–269.

Davis, J., Gallego, G. and Topaloglu, H. (2014), ‘Assortment optimization under variants of the
nested logit model’, Operations Research 62(2), 250–273.

Desir, A. and Goyal, V. (2013), An FPTAS for capacity constrained assortment optimization,
Technical report, Columbia University, School of Industrial Engineering and Operations Research.

Frieze, A. M. and Clarke, M. R. B. (1984), ‘Approximation algorithms for the m-dimensional 0-
1 knapsack problem: Worst-case and probabilistic analyses’, European Journal of Operational
Research 15, 100–109.

Gallego, G., Iyengar, G., Phillips, R. and Dubey, A. (2004), Managing flexible products on a
network, Technical report, Columbia University.

Gallego, G. and Topaloglu, H. (2014), ‘Constrained assortment optimization for the nested logit
model’, Management Science 60(10), 2583–2601.

Grigolon, L. and Verboren, F. (2014), ‘Nested logit or random coefficients logit? A comparison
of alternative discrete choice models of product differentiation’, The Review of Economics and
Statistics 96(5), 916–935.

Hashizume, S., Fukushima, M., Katoh, N. and Ibaraki, T. (1987), ‘Approxiation algorithms for
combinatorial fractional programming problems’, Mathematical Programming 37(3), 255–267.

Li, G. and Rusmevichientong, P. (2014), ‘A greedy algorithm for assortment optimization in the
two-level nested logit model’, Operations Research Letters Letters 42(5), 319–324.

Luce, R. D. (1959), Individual Choice Behavior: A Theoretical Analysis, Wiley, New York, NY.
McFadden, D. (1974), Conditional logit analysis of qualitative choice behavior, in P. Zarembka,

ed., ‘Frontiers in Economics’, Academic Press, pp. 105–142.
Meggido, N. (1979), ‘Combinatorial optimization with rational objective functions’, Mathematics

of Operations Research 4(4), 414–424.
Mendez-Diaz, I., Bront, J. J. M., Vulcano, G. and Zabala, P. (2010), ‘A branch-and-cut algorithm

for the latent-class logit assortment problem’, Discrete Applied Mathematics 36, 383–390.
Mittal, S. and Schulz, A. S. (2013), ‘A general framework for designing approximation schemes

for combinatorial optimization problems with many objectives combined into one’, Operations
Research 61(2), 389–397.

Puterman, M. L. (1994), Markov Decision Processes, John Wiley and Sons, Inc., New York.
Rusmevichientong, P., Shen, Z.-J. M. and Shmoys, D. B. (2009), ‘A PTAS for capacitated sum-of-

19

ratios optimization’, Operations Research Letters 37(4), 230–238.
Rusmevichientong, P., Shen, Z.-J. M. and Shmoys, D. B. (2010), ‘Dynamic assortment optimization

with a multinomial logit choice model and capacity constraint’, Operations Research 58(6), 1666–
1680.

Rusmevichientong, P., Shmoys, D. B., Tong, C. and Topaloglu, H. (2014), ‘Assortment optimization
under the multinomial logit model with random choice parameters’, Production and Operations
Management 23(11), 2023–2039.

Sinha, P. and Zoltners, A. A. (1979), ‘The multiple-choice knapsack problem’, Operations Research
27(3), 503–515.

Slade, M. E. (2009), Merge-simulations of unilateral effects: What can we learn from the UK
brewing industry?, in B. Lyons, ed., ‘Cases in European Competition Policy: The Economic
Analysis’, Cambridge University Press, Cambridge.

Talluri, K. and van Ryzin, G. (2004), ‘Revenue management under a general discrete choice model
of consumer behavior’, Management Science 50(1), 15–33.

Train, K. (2003), Discrete Choice Methods with Simulation, Cambridge University Press,
Cambridge, UK.

Train, K. E., McFadden, D. L. and Ben-Akiva, M. (1987), ‘The demand for local telephone service:
A fully discrete model of residential calling patterns and service choices’, The RAND Journal of
Economics 18(1), 109–123.

Wang, R. (2012), ‘Capacitated assortment and price optimization under the multinomial logit
model’, Operations Research Letters 40, 492–497.

Wang, R. (2013), ‘Assortment management under the generalized attraction model with a capacity
constraint’, Journal of Revenue and Pricing Management 12(3), 254–270.

20

