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A Online Appendix: Proof of Corollary 2

We let (S∗
1 , . . . , S

∗
m) be an optimal solution to problem (1) so that z∗ = Π(S∗

1 , . . . , S
∗
m) =∑

i∈M Vi(S
∗
i )

γiRi(S
∗
i )/(v0 +

∑
i∈M Vi(S

∗
i )

γi). Focusing on the first and last terms in this chain

of equalities and solving for z∗, we obtain v0 z
∗ =

∑
i∈M Vi(S

∗
i )

γi(Ri(S
∗
i )− z∗). Since (S∗

1 , . . . , S
∗
m)

is a feasible solution to problem (2) when we solve this problem with z = z∗, we obtain f(z∗) ≥∑
i∈M Vi(S

∗
i )

γi(Ri(S
∗
i )−z∗), in which case, using the last equality, we have f(z∗) ≥ v0 z

∗. We claim

that α ẑ ≥ z∗. To get a contradiction, assume that α ẑ < z∗. In this case, we obtain f(z∗) ≥ v0 z
∗ >

αv0 ẑ = α fR(ẑ) ≥ f(ẑ), where the equality follows from the definition of ẑ. Since f(·) is decreasing,
having f(z∗) ≥ f(ẑ) implies that z∗ ≤ ẑ ≤ α ẑ, which contradicts the assumption that α ẑ < z∗ and

the claim follows. To obtain the desired result, we observe that
∑

i∈M Vi(Ŝi)
γi(αβ Ri(Ŝi) − z∗) ≥∑

i∈M Vi(Ŝi)
γi(αβ Ri(Ŝi) − β z∗) ≥

∑
i∈M Vi(Ŝi)

γi(αβ Ri(Ŝi)− αβ ẑ) ≥ α fR(ẑ) = α v0 ẑ ≥ v0 z
∗,

where the first inequality follows from the fact that β ≥ 1, the second inequality is by the fact

that α ẑ ≥ z∗ and the third inequality follows from the inequality given in the corollary. Focusing

on the first and last expressions in the last chain of inequalities and solving for z∗, we obtain

z∗ ≤ αβ
∑

i∈M Vi(Ŝi)
γiRi(Ŝi)/(v0 +

∑
i∈M Vi(Ŝi)

γi) = αβΠ(Ŝ1, . . . , Ŝm).

B Online Appendix: An Upper Bound

The approach in Section 5 obtains a 4-approximate solution under a space constraint, indicating

that this approach never performs arbitrarily badly. However, knowing that a solution provides at

least a quarter of the optimal expected revenue may not be thoroughly satisfying from a practical

perspective. In this section, we develop a tractable approach for obtaining an upper bound on the

optimal expected revenue for an individual instance of problem (1) under a space constraint. By

comparing this upper bound on the optimal expected revenue with the expected revenue obtained

by a particular assortment, we can get a feel for the optimality gap of the assortment on hand.

To construct an upper bound on the optimal expected revenue in problem (1), for each nest i,

we partition the interval [0, c] into K intervals {[bk−1
i , bki ] : k = 1, . . . ,K}, where we have 0 = b0i ≤

b1i ≤ . . . ≤ bK−1
i ≤ bKi = c. Noting that the total preference weight of the products offered in nest

i can at most be
∑

j∈N vij , we let v̄i =
∑

j∈N vij and partition the interval [0, v̄i] into L intervals

{[νq−1
i , νqi ] : q = 1, . . . , L} with 0 = ν0i ≤ ν1i ≤ . . . ≤ νL−1

i ≤ νLi = v̄i. Using the decision variables

xi = {xij : j ∈ N} ∈ [0, 1]n, we define ϕkq
i (z) as

ϕkq
i (z) = max (νq−1

i )γi

{∑
j∈N vij rij xij

νq−1
i

− z

}
(21)

st
∑
j∈N

wij xij ≤ bki (22)

∑
j∈N

vij xij ≤ νqi (23)

0 ≤ xij ≤ 1(wij ≤ bki ) ∀ j ∈ N, (24)
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which is a continuous knapsack problem with two dimensions. The selection of the intervals

{[bk−1
i , bki ] : k = 1, . . . ,K} and {[νq−1

i , νqi ] : q = 1, . . . , L} can be completely arbitrary, as long

as these intervals respectively cover [0, c] and [0, v̄i]. We observe that ϕkq
i (z) is a linear function

of z. If q = 1, then νq−1
i = 0, in which case, we have a zero in the denominator of the fraction

above. To deal with this case, if q = 1, then we follow the convention that ϕkq
i (z) = 0 for all

k = 1, . . . ,K and z ∈ ℜ+. Roughly speaking, we can interpret problem (21)-(24) as a continuous

version of problem (9). In the objective function of problem (21)-(24), the term νq−1
i corresponds to

Vi(Si) in the objective function of problem (9). Noting that Ri(Si) =
∑

j∈Si
rij vij/Vi(Si), the term∑

j∈N vij rij xij/ν
q−1
i in the objective function of problem (21)-(24) corresponds to Ri(Si) in the

objective function of problem (9). The first constraint in problem (21)-(24) imposes the capacity

constraint, whereas the second constraint ensures that the total preference weight of the offered

products are computed correctly. We use νq−1
i in the objective function, but νqi in the constraint

to ultimately ensure that we can use ϕkq
i (z) to obtain an upper bound on the optimal expected

revenue. Using the decision variables ∆, y = {yi : i ∈ M} and z, to obtain an upper bound on the

optimal expected revenue, we propose solving the problem

min c∆+
∑
i∈M

yi (25)

st bk−1
i ∆+ yi ≥ ϕkq

i (z) ∀ i ∈ M, k = 1, . . . ,K, q = 1, . . . , L (26)

c∆+
∑
i∈M

yi = v0 z (27)

∆ ≥ 0, yi is free, z is free ∀ i ∈ M. (28)

Since ϕkq
i (·) is linear, the problem above is a linear program. The next theorem shows that we can

use this problem to obtain an upper bound on the optimal expected revenue z∗ in problem (1).

Theorem 7 Letting (∆̂, ŷ, ẑ) be an optimal solution to problem (25)-(28), we have ẑ ≥ z∗.

Proof. We let (S∗
1 , . . . , S

∗
m) be an optimal solution to problem (1), k′i be such that Ci(S

∗
i ) ∈

[b
k′i−1
i , b

k′i
i ] and q′i be such that Vi(S

∗
i ) ∈ [ν

q′i−1
i , ν

q′i
i ]. Since (∆̂, ŷ, ẑ) is a feasible solution to problem

(25)-(28), we have b
k′i−1
i ∆̂ + ŷi ≥ ϕ

k′iq
′
i

i (ẑ) for all i ∈ M . Adding this inequality over all i ∈ M , we

obtain
∑

i∈M ϕ
k′iq

′
i

i (ẑ) ≤
∑

i∈M b
k′i−1
i ∆̂+

∑
i∈M ŷi ≤

∑
i∈M Ci(S

∗
i ) ∆̂+

∑
i∈M ŷi ≤ c ∆̂+

∑
i∈M ŷi =

v0 ẑ, where the second inequality uses the fact that Ci(S
∗
i ) ≥ b

k′i−1
i , the third inequality uses the

fact that (S∗
1 , . . . , S

∗
m) is a feasible solution to problem (1) and the equality is by the fact that

(∆̂, ŷ, ẑ) is a feasible solution to problem (25)-(28). Thus, the last chain of inequalities implies that∑
i∈M ϕ

k′iq
′
i

i (ẑ) ≤ v0 ẑ. On the other hand, consider a solution x∗i to problem (21)-(24) obtained

by letting x∗ij = 1 if j ∈ S∗
i and x∗ij = 0 otherwise. Since

∑
j∈N wij x

∗
ij = Ci(S

∗
i ) ≤ b

k′i
i and∑

j∈N vij x
∗
ij = Vi(S

∗
i ) ≤ ν

q′i
i , the solution x∗i is feasible to problem (21)-(24) when we solve this

problem with k = k′i, q = q′i and z = ẑ. So, the optimal objective value of problem (21)-(24) is at
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least as large as the objective value provided by the feasible solution x∗i and we obtain

ϕ
k′iq

′
i

i (ẑ) ≥ (ν
q′i−1
i )γi

{∑
j∈N vij rij x

∗
ij

ν
q′i−1
i

− ẑ

}
=

∑
j∈N vij rij x

∗
ij

(ν
q′i−1
i )1−γi

− (ν
q′i−1
i )γi ẑ

≥
∑

j∈N vij rij x
∗
ij

Vi(S∗
i )

1−γi
− Vi(S

∗
i )

γi ẑ = Vi(S
∗
i )

γi

{∑
j∈S∗

i
vij rij

Vi(S∗
i )

− ẑ

}
= Vi(S

∗
i )

γi(Ri(S
∗
i )− ẑ),

where the second inequality uses the fact that Vi(S
∗
i ) ≥ ν

q′i−1
i and the second equality uses the

definition of x∗i . Since we have
∑

i∈M ϕ
k′iq

′
i

i (ẑ) ≤ v0ẑ as shown at the beginning of the proof, the

chain of inequalities above implies that v0 ẑ ≥
∑

i∈M ϕ
k′iq

′
i

i (ẑ) ≥
∑

i∈M Vi(S
∗
i )

γi (Ri(S
∗
i )− ẑ). If we

focus on the first and last expressions in this chain of inequalities and solve for ẑ, then we obtain

ẑ ≥
∑

i∈M Vi(S
∗
i )

γi Ri(S
∗
i )/(v0 +

∑
i∈M Vi(S

∗
i )

γi) = Π(S∗
1 , . . . , S

∗
m) = z∗. �
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