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A Online Appendix: Proof of Corollary 2

We let (S7,...,S)) be an optimal solution to problem (1) so that z* = II(S},...,S}) =
Y iea VilSi) i Ri(S7)/(vo + D icar Vi(S)7). Focusing on the first and last terms in this chain
of equalities and solving for z*, we obtain vy z* = >, 5, Vi(S7) " (R;(S;]) — 2*). Since (S7,...,S;,)
is a feasible solution to problem (2) when we solve this problem with z = z*, we obtain f(z*) >
Y iear Vi(Si) Y (Ri(S;) —2*), in which case, using the last equality, we have f(2*) > v 2*. We claim
that a2 > z*. To get a contradiction, assume that « £ < z*. In this case, we obtain f(z*) > vg z* >
avg 2 = a fF(2) > f(2), where the equality follows from the definition of 2. Since f(-) is decreasing,
having f(z*) > f(2) implies that z* < 2 < « 2, which contradicts the assumption that a2 < z* and
the claim follows To obtaln the desired result we observe that ).,/ Vi(Si) % (o B Ry(S;) — %) >
S iear ViS (@ B RAS) — B2) > Yiens VS (@B Ri(S) — af2) > a fA(2) = a2 > w2,
where the first inequality follows from the fact that § > 1, the second inequality is by the fact
that a2 > 2* and the third inequality follows from the inequality given in the corollary. Focusing

on the first and last expressions in the last chain of inequalities and solving for z*, we obtain

7 < aBY ey VilSi) i Ri(Si) [ (vo + Yiens Vil5i)) = a BII(S1, . .., ).

B Online Appendix: An Upper Bound

The approach in Section 5 obtains a 4-approximate solution under a space constraint, indicating
that this approach never performs arbitrarily badly. However, knowing that a solution provides at
least a quarter of the optimal expected revenue may not be thoroughly satisfying from a practical
perspective. In this section, we develop a tractable approach for obtaining an upper bound on the
optimal expected revenue for an individual instance of problem (1) under a space constraint. By
comparing this upper bound on the optimal expected revenue with the expected revenue obtained

by a particular assortment, we can get a feel for the optimality gap of the assortment on hand.

To construct an upper bound on the optimal expected revenue in problem (1), for each nest ¢,
we partition the interval [0, ¢] into K intervals {[bffl, b1 k=1,...,K}, where we have 0 = ) <
bi1 <...< biK 1< biK = c. Noting that the total preference weight of the products offered in nest
i can at most be . v, we let v; = > .y vj; and partition the interval [0, ;] into L intervals
{[1/;1_1,1/29] cq=1,..., L} with0=1) <yl <...< yiL_l < v} = ;. Using the decision variables

x; ={xs5:j € N} €[0,1]", we define gbfq(z) as

(=) = max <u§1>%{ZjGN”i”"jx“—z} (21)

pi!
st Z wij xij < b (22)
JjEN
Z vij xij < vl (23)
JEN
0<aij <1(w; <) VjeN, (24)



which is a continuous knapsack problem with two dimensions. The selection of the intervals
(108 -k =1,...,K} and {[Vg_l,vg] : g = 1,...,L} can be completely arbitrary, as long
as these intervals respectively cover [0, ] and [0,7;]. We observe that ¢fq(z) is a linear function
of z. If ¢ =1, then fol = 0, in which case, we have a zero in the denominator of the fraction
above. To deal with this case, if ¢ = 1, then we follow the convention that d)fq(z) = 0 for all
k=1,...,K and z € ®;. Roughly speaking, we can interpret problem (21)-(24) as a continuous
version of problem (9). In the objective function of problem (21)-(24), the term yf_l
Vi(S;) in the objective function of problem (9). Noting that R;(S:;) = g, ij vij/Vi(Si), the term

2 jeN Vij Tij :cij/yf_l in the objective function of problem (21)-(24) corresponds to R;(S;) in the

corresponds to

objective function of problem (9). The first constraint in problem (21)-(24) imposes the capacity
constraint, whereas the second constraint ensures that the total preference weight of the offered

products are computed correctly. We use Viqfl

in the objective function, but 1/ in the constraint
to ultimately ensure that we can use qﬁfq(z) to obtain an upper bound on the optimal expected
revenue. Using the decision variables A, y = {y; : i € M} and z, to obtain an upper bound on the

optimal expected revenue, we propose solving the problem

min  cA+ Zyi (25)
ieM
st bETLA 4y > oM(2) VieM, k=1,....K, ¢g=1,...,L (26)
cA—l—Zyi:vgz (27)
ieM
A >0, y; is free, z is free Vi e M. (28)

Since qbfq(-) is linear, the problem above is a linear program. The next theorem shows that we can

use this problem to obtain an upper bound on the optimal expected revenue z* in problem (1).

Theorem 7 Letting (A, y,2) be an optimal solution to problem (25)-(28), we have 2 > z*.

Proof. We let (ST,...,S)) be an optimal solution to problem (1), k; be such that C;(SF) €
[bi-Cg " bzg} and ¢, be such that V(S*) lv; ot {12] Since (A, 7, 2) is a feasible solution to problem
(25)-(28), we have b RN + 9 > qb ’q’( ) for all i € M. Adding this inequality over all i € M, we
obtain » ;s ¢; Zqz( ) < ZzeM bzl A+Zz€M 9i <2 iem Ci(S] )A+ZzeM Ui < CA+ZZGM Yi =
vo 2, where the second inequality uses the fact that C;(S}) > b © 7, the third inequality uses the
fact that (S7,...,S},) is a feasible solution to problem (1) and the equality is by the fact that
(A, 4, 2) is a feasible solution to problem (25)-(28). Thus, the last chain of inequalities implies that
YoieMm stéq;(é) < wg 2. On the other hand, consider a solution z} to problem (21)-(24) obtained
by letting zj; = 1if j € S} and z; = 0 otherwise. Since } ;. ywijzj; = Ci(S)) < bfg and
> jen Vij T = Vi(S)) < yq; the solution 7 is feasible to problem (21)-(24) when we solve this
problem with k =k}, ¢ = ¢, and z = Z. So, the optimal objective value of problem (21)-(24) is at



least as large as the objective value provided by the feasible solution z; and we obtain

k'q' . 1~ Z'eN'Uij?"ij x; R Z'ENUij lex* 1~ A
Aot 2 (-t T | et iy
v (v;" )t
> jen Vij Tij T s vy | 2ojes: Vi Tij
2 TSy AT E= VST e
i\Fg 1\Mq

_ } V(S (RS — ),

where the second inequality uses the fact that V;(S)) > Uf;_l and the second equality uses the
definition of x}. Since we have ) .,/ qﬁf;qg(é) < vz as shown at the beginning of the proof, the
chain of inequalities above implies that vo 2 > >, .y, (bf;q; (2) = 2 e Vi(Si) (Ri(S)) — 2). If we
focus on the first and last expressions in this chain of inequalities and solve for Z, then we obtain
8> S0 VST R(S7)/ (0 + Tins V(ST = TI(S, ... S3) = 2. O



