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A Online Appendix: Upper Bounds from a Linear Programming Formulation

Bront et al. (2009) show that problem (1) can be formulated as a mixed integer program. Thus,

a tempting approach to obtain upper bounds on the optimal expected revenue is to solve the

linear programming relaxation of this mixed integer program. In this section, we show that when

we focus on each customer type individually, if customers of each type make a purchase with a

reasonably large probability, then the optimal objective value of the linear programming relaxation

of the mixed integer program is equal to the upper bound on the optimal expected revenue that

is obtained under the assumption that we can offer different sets of products to different customer

types. To state this result, we note that Bront et al. (2009) show that we can obtain the optimal

objective value of problem (1) by solving the mixed integer program

max
∑
g∈G

∑
j∈N

αg rj v
g
j y

g
j (18)

subject to
∑
j∈N

vgj y
g
j + wg = 1 ∀ g ∈ G

ygj ≤ wg ∀ j ∈ N, g ∈ G

ygj ≤ zj ∀j ∈ N, g ∈ G

wg − ygj ≤ 1− zj ∀j ∈ N, g ∈ G

ygj ≥ 0, wg ≥ 0, zj ∈ {0, 1} ∀j ∈ N, g ∈ G.

We use the vector x̂g = {x̂gj : j ∈ N} ∈ {0, 1}|N | to capture the set of products that maximizes

the expected revenue only from customers of type g. In other words, x̂g is an optimal solution

to the problem Ẑg = maxx∈{0,1}|N|
∑

j∈N rj P
g
j (x) with the corresponding optimal objective value

Ẑg. Therefore, the expected revenue
∑

g∈G αg Ẑg provides an upper bound on the optimal objective

value of problem (1), since the expected revenue
∑

g∈G αg Ẑg is obtained under the assumption that

we can offer different sets of products to different customer types, whereas problem (1) requires

that we offer a single set of products to customers of all types. In this case, if we offer the set of

products captured by the vector x̂g, then a customer of type g makes a purchase within the set of

offered products with probability P̂ g =
∑

j∈N P g
j (x̂

g).

The next proposition shows that if we have P̂ g ≥ 1/2 for all g ∈ G, then the optimal objective

value of the linear programming relaxation of problem (18) is equal to
∑

g∈G αg Ẑg. So, if customers

of each type g make a purchase with a probability of at least 1/2 when offered the set of products

captured by the vector x̂g, then the upper bound on the optimal expected revenue provided by the

linear programming relaxation of problem (18) does not improve the upper bound obtained under

the assumption that we can offer different sets of products to different customer types.

Proposition 4 Let x̂g be an optimal solution to the problem maxx∈{0,1}|N|
∑

j∈N rj P
g
j (x) with the

corresponding optimal objective value Ẑg and P̂ g be defined as P̂ g =
∑

j∈N P g
j (x̂

g). If we have

P̂ g ≥ 1/2 for all g ∈ G, then the optimal objective value of the linear programming relaxation of

problem (18) is equal to
∑

g∈G αg Ẑg.
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Proof. We let ζ̂ be the optimal objective value of the linear programming relaxation of problem

(18). First, we show that ζ̂ ≤
∑

g∈G αg Ẑg. We use ŷ = {ŷgj : j ∈ N, g ∈ G}, ŵ = {ŵg : g ∈ G} and

ẑ = {ẑj : j ∈ N} to denote an optimal solution to the linear programming relaxation of problem

(18) and let ζ̂g be defined as ζ̂g =
∑

j∈N rj v
g
j ŷ

g
j , in which case, we have ζ̂ =

∑
g∈G αg ζ̂g. We

observe that we must have ŵg > 0 for all g ∈ G, since if ŵg = 0 for some g ∈ G, then the

second set of constraints in problem (18) imply that ŷgj = 0 for all j ∈ N as well, in which case,

it is not possible to satisfy the first set of constraints. Now, we claim that ζ̂g ≤ Ẑg. To get a

contradiction, we proceed under the assumption that ζ̂g > Ẑg. By the definition of Ẑg, we have

Ẑg ≥
∑

j∈N rj P
g
j (x) = (

∑
j∈N rj v

g
j x

g
j )/(1 +

∑
j∈N vgj x

g
j ) for all x

g ∈ {0, 1}|N |. If we arrange the

terms in this inequality, then it follows that Ẑg ≥
∑

j∈N (rj − Ẑg) vgj x
g
j for all xg ∈ {0, 1}|N |, in

which case, we obtain the chain of inequalities

ζg > Ẑg ≥ max
xg∈{0,1}|N|

{∑
j∈N

(rj − Ẑg) vgj x
g
j

}
≥ max

xg∈{0,1}|N|

{∑
j∈N

(rj − ζ̂g) vgj x
g
j

}

= max
xg∈[0,1]|N|

{∑
j∈N

(rj − ζ̂g) vgj x
g
j

}
≥

∑
j∈N

(rj − ζ̂g) vgj
ŷgj
ŵg

.

The first and third inequalities above use the assumption that ζ̂g > Ẑg. The equality above

follows by noting that the objective function of the second optimization problem above is linear,

in which case, the continuous relaxation of this problem has an integer optimal solution. To

see that the fourth inequality above holds, we note that since ŵg > 0, the second set of

constraints in problem (18) yield ŷgj /ŵ
g ∈ [0, 1] for all j ∈ N so that {ŷgj /ŵg : j ∈ N} is a

feasible solution to the third optimization problem above. From the chain of inequalities above,

we obtain
∑

j∈N (rj − ζ̂g) vgj ŷ
g
j /ŵ

g < ζ̂g, which can equivalently be written as
∑

j∈N rj v
g
j ŷ

g
j <

ζ̂g (ŵg +
∑

j∈N vgj ŷ
g
j ). By the definition of ζ̂g, the left side of the last strict inequality is equal to

ζ̂g, but noting the first set of constraints in problem (18), we have ŵg +
∑

j∈N vgj ŷ
g
j = 1 and the

right of this strict inequality is equal to ζ̂g as well, which is a contradiction. Thus, our claim holds

and we have ζ̂g ≤ Ẑg. In this case, we obtain ζ̂ =
∑

g∈G αg ζ̂g ≤
∑

g∈G αg Ẑg.

Second, we show that ζ̂ ≥
∑

g∈G αg Ẑg. Letting x̂g = {x̂gj : j ∈ N} be defined as in the

statement of the proposition, we define the solution ŷ = {ŷgj : j ∈ N, g ∈ G}, ŵ = {ŵg : g ∈ G}
and ẑ = {ẑj : j ∈ N} to the linear programming relaxation of problem (18) as

ŷgj =
x̂gj

1 +
∑

i∈N vgi x̂
g
i

ŵg =
1

1 +
∑

j∈N vgj x̂
g
j

ẑj = max
g∈G

{
x̂gj

1 +
∑

i∈N vgi x̂
g
i

}
.

It is straightforward to see that the solution (ŷ, ŵ, ẑ) satisfies the first, second and third sets of

constraints in problem (18). Since P̂ g = (
∑

j∈N vgj x̂
g
j )/(1 +

∑
j∈N vgj x̂

g
j ) ≥ 1/2, subtracting one

from both sides of this inequality, we obtain 1/(1+
∑

j∈N vgj x̂
g
j ) ≤ 1/2, which implies that ŷgj ≤ 1/2,

ŵg ≤ 1/2 and ẑj ≤ 1/2 for all j ∈ N , g ∈ G. Also, by the definition of ŷgj and ŵg, we have either

ŵg − ŷgj = 0 or ŵg − ŷgj = ŵg, which happen respectively when x̂gj = 1 and x̂gj = 0. If we have

ŵg− ŷgj = 0, then the fourth set of constraints for this product j and customer type g is satisfied. If
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we have ŵg − ŷgj = ŵg, then we obtain ŵg − ŷgj = ŵg ≤ 1/2 = 1− 1/2 ≤ 1− ẑj , indicating that the

fourth set of constraints for this product j and customer type g is satisfied as well. Thus, the solution

(ŷ, ŵ, ẑ) is feasible to the linear programming relaxation of problem (18). So, the optimal objective

value of the linear programming relaxation of problem (18) satisfies ζ̂ ≥
∑

g∈G
∑

j∈N αg rj v
g
j ŷ

g
j =∑

g∈G αg
∑

j∈N rj v
g
j x̂

g
j/(1 +

∑
i∈N vgi x̂

g
i ) =

∑
g∈G

∑
j∈N αg rj P

g
j (x̂

g) =
∑

g∈G αg Ẑg, where the

first inequality follows from the fact that (ŷ, ŵ, ẑ) is a feasible, but not necessarily an optimal

solution to the linear programming relaxation of problem (18). �

The first part of the proof of Proposition 4 does not use the assumption that P̂ g ≥ 1/2 for

all g ∈ G. Therefore, the upper bound on the optimal expected revenue provided by the linear

programming relaxation of problem (18) is always at least as tight as the upper bound that is

obtained under the assumption that we can offer different sets of products to different customer

types. However, when we focus on each customer type individually, if customers of each type

make a purchase with a probability exceeding 1/2, then the upper bound provided by the linear

programming relaxation of problem (18) is equal to the upper bound that is obtained under the

assumption that we can offer different sets of products to different customer types.

If we do not have P̂ g ≥ 1/2 for all g ∈ G, then we can give examples where the upper

bound provided the linear programming relaxation of problem (18) is tighter than the upper

bound obtained under the assumption that we can offer different sets of products to different

customer types. Consider a problem instance with two products N = {1, 2} and two customer

types G = {1, 2}. The revenues of the products are (r1, r2) = (95, 7). The preference weights of

the two customer types are (v11, v
1
2) = (0.09, 0.09) and (v21, v

2
2) = (0, 0.01). The probabilities of

observing the two customer types are (α1, α2) = (0.5, 0.5). For this problem instance, the optimal

objective value of the linear programming relaxation of problem (18) is about 3.92. On the other

hand, if we assume that we can offer different sets of products to different customer types, then

the upper bound that we obtain is about 3.96. For this problem instance, the solutions x̂1 = (1, 0)

and x̂2 = (1, 1) maximize the expected revenue from each one of the two customer types when

we focus on each one of the two customer types individually. When customers of each type are

offered the solutions corresponding to them, they make a purchase respectively with probabilities

0.09/(1 + 0.09) ≈ 0.08 and 0.01/(1 + 0.01) ≈ 0.01. Since these probabilities of making a purchase

are less than 1/2, this example violates the assumption of Proposition 4 and the upper bound on

the optimal expected revenue provided by the linear programming relaxation of problem (18) can

be tighter than the upper bound that is obtained under the assumption that we can offer different

sets of products to different customer types.

B Online Appendix: Expected Revenue for Specially Structured Problem
Instances

In this section, we show that the optimal expected revenue in the specially structured problem

instance given in Table 3 is at most (3 + 2 θ + θ2)/(1 + θ + θ2). We observe that the revenue
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Offered Expected Revenue Upp. Bnd.
Set of from Cus. Typ. on Exp.
Prods. 1 2 3 Rev.

{3} θ4

1 + θ2
0 0

θ2

1 + θ + θ2

{1,3} θ4 + θ6

1 + θ2 + θ6
θ6

1 + θ6
θ6

1 + θ6
2 + θ + θ2

1 + θ + θ2

{2,3} θ4 + θ5

1 + θ2 + θ4
θ5

1 + θ4
0

2 θ + θ2

1 + θ + θ2

{1,2,3} θ4 + θ5 + θ6

1 + θ2 + θ4 + θ6
θ5 + θ6

1 + θ4 + θ6
θ6

1 + θ6
3 + 2 θ + θ2

1 + θ + θ2

Table 8: Expected revenues obtained from different customer types and an upper bound on expected
revenues obtained by offering different sets of products.

associated with product three is θ2, which is the largest one among all product revenues. Thus, it

is trivially optimal to offer product three and we only consider the sets of products that include

product three without loss of optimality. Table 8 shows the expected revenue obtained from each

customer type when we offer a particular set of products and an upper bound on the expected

revenue over all customer types when we offer the particular set. To understand the figures in

Table 8, for example, if we offer the set of products {2, 3}, then we obtain expected revenues of∑
j∈{2,3} rj v

1
j /(1+

∑
j∈{2,3} v

1
j ) = (θ4+θ5)/(1+θ2+θ4),

∑
j∈{2,3} rj v

2
j /(1+

∑
j∈{2,3} v

2
j ) = θ5/(1+θ4)

and zero respectively from customers of type one, two and three. These figures correspond to

the entries in the second, third and fourth columns in Table 8. Noting that θ ≥ 1, we have

(θ4 + θ5)/(1 + θ2 + θ4) ≤ 2 θ5/θ4 = 2 θ and θ5/(1 + θ4) ≤ θ5/θ4 = θ, in which case, if we offer the

set of products {2, 3}, then the expected revenue obtained over all customer types is at most

1

1 + θ + θ2
2 θ +

θ

1 + θ + θ2
θ =

2 θ + θ2

1 + θ + θ2
,

which corresponds to the entry in the last column in Table 8. The other entries in Table 8 are

obtained in a similar fashion. We observe that each one of the entries in the last column of Table

8 is no larger than (3 + 2 θ+ θ2)/(1 + θ+ θ2), which implies that the optimal expected revenue for

the problem instance given in Table 3 is at most (3 + 2 θ + θ2)/(1 + θ + θ2), as desired.
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